Сколько вакуолей в растительной клетке. Вакуоли и их значение для клеток

Для большинства зрелых клеток растений характерна крупная центральная вакуоль, занимающая до 70-90% объема клетки. При этом протопласт со всеми органеллами располагается в виде очень тонкого постенного слоя, выстилающего клеточную стенку. В постенном протопласте обычно встречаются мелкие цитоплазматические вакуоли. Иногда ядро располагается в центре клетки в ядерном кармашке цитоплазмы, который связан с постенным слоем тончайшими цитоплазматическими тяжами, пересекающими центральную вакуоль.

Клеточный сок представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта, в основном, запасными веществами и отбросами. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная. Вещества, входящие в состав клеточного сока, чрезвычайно разнообразны. Это углеводы, белки, органические кислоты и их соли, аминокислоты, минеральные ионы, алкалоиды, гликозиды, танниды, пигменты и другие растворимые в воде соединения. Большинство из них относится к группе эргастических веществ – продуктов метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Многие вещества клеточного сока образуются только в растительных клетках.

Углеводы клеточного сока растений представлены моносахаридами (глюкоза, фруктоза), дисахаридами (сахароза) и полисахаридами (слизи, инулин).

Глюкоза (виноградный сахар) и фруктоза (плодовый сахар) накапливаются в больших количествах в сочных плодах. Сахароза (свекловичный сахар) в больших количествах накапливается в корнеплодах сахарной свеклы и стеблях сахарного тростника. Для ряда семейств растений (кактусовые, толстянковые, орхидные) характерно накопление в клеточном соке слизей, удерживающих воду. Инулин – запасной полисахарид, откладывается в виде коллоидного раствора в клеточном соке подземных органов сложноцветных вместо крахмала.

Белки накапливаются в виде коллоидного раствора в вакуолях клеток созревающих семян. При обезвоживании семян на поздних этапах их развития вода удаляется из вакуолей, концентрация белка в клеточном соке повышается, и он переходит в состояние твердого геля. Дегидратированные вакуоли зрелых семян называют алейроновыми зернами .

Из органических кислот в клеточном соке наиболее часто встречаются лимонная, яблочная, янтарная и щавелевая. Эти кислоты находятся в большом количестве в клеточном соке незрелых плодов, придавая им кислый вкус. При созревании плодов органические кислоты могут использоваться как субстраты дыхания, поэтому кислый вкус плодов обычно исчезает. Соли органических кислот вместе с минеральными ионами играют большую роль в осмотических процессах.

Танниды (дубильные вещества) – полимерные фенольные соединения вяжущего вкуса. Они обладают антисептическими свойствами и защищают ткани растений от инфекций и загнивания. Особенно богаты дубильными веществами клетки коры стеблей и корней (дуб, ива), незрелых плодов (грецкий орех), листьев (чай) и некоторых патологических наростов – галлов. Танниды используются в медицине, для дубления кожи, окраски ткани в темно-коричневый цвет.

Алкалоиды – разнообразные в химическом отношении азотсодержащие органические вещества, имеющие горький вкус. Они обладают свойствами оснований и содержатся в клеточном соке, как правило, в виде солей. Многие алкалоидоносные растения ядовиты и не поедаются травоядными животными. В клетках, содержащих алкалоиды, не развиваются споры и зачатки микроорганизмов, растения не поражаются грибными и бактериальными болезнями. Особенно богаты алкалоидами представители семейств пасленовых, маковых, мареновых, лютиковых и др.

Гликозиды – обширная группа природных веществ, соединения сахаров со спиртами, альдегидами, фенолами и другими веществами. Ряд гликозидов растений используется в медицине. К гликозидам принадлежат также пигменты клеточного сока – флавоноиды . Одни из них – антоцианы – придают клеточному соку красный, синий или фиолетовый цвет; другие – флавоны – желтый. С антоцианами связана окраска цветков многих растений. Цветовая гамма обусловлена реакцией клеточного сока: если она кислая, то господствуют красные тона, нейтральная – фиолетовые, при слабощелочной реакции – синие. На возникновение оттенков оказывает влияние также образование антоцианами комплексов с различными металлами. Флавоны обусловливают желтый цвет лепестков ряда растений.

Значение органических кислот, таннидов, алкалоидов и гликозидов клеточного сока в обмене веществ клетки выяснено недостаточно. Раньше их рассматривали как конечные продукты обмена. В настоящее время показано, что многие из них могут вновь вовлекаться в процессы метаболизма и поэтому их можно рассматривать и как запасные вещества.

Кроме функции накопления запасных веществ и отбросов, вакуоли в растительных клетках выполняют еще одну важную функцию – поддержание тургора. Концентрация ионов и сахаров в клеточном соке центральной вакуоли, как правило, выше, чем в клеточной стенке; тонопласт значительно замедляет диффузию из вакуоли этих веществ и в то же время легко проницаем для воды. Поэтому вода будет поступать в вакуоль. Такой однонаправленный процесс диффузии воды через избирательно проницаемую мембрану носит название осмоса . Поступающая в клеточный сок вода оказывает давление на постенный протопласт, а через него и на клеточную стенку, вызывая напряженное, упругое ее состояние, или тургор клетки. Тургор обеспечивает сохранение неодревесневшими органами растения формы и положения в пространстве, а также их сопротивление действию механических факторов.

Если клетку поместить в гипертонический раствор какой-нибудь нетоксичной соли или сахара (т. е. в раствор большей концентрации, чем концентрация клеточного сока), то происходит осмотический выход воды из вакуоли. В результате этого ее объем сокращается, эластичный постенный протопласт отходит от клеточной стенки, тургор исчезает, наступает плазмолиз клетки(рис.2.9 ).

Рис. 2.9. Схема плазмолиза : 1 – клетка в состоянии тургора; 2 – начало плазмолиза; 3 – полный плазмолиз.

Плазмолиз обычно обратим. При помещении клетки в воду или в гипотонический раствор вода снова энергично поглощается центральной вакуолью, протопласт опять прижимается к клеточной стенке, тургор восстанавливается. Плазмолиз может служить показателем живого состояния клетки, мертвая клетка не плазмолизируется, так как не имеет избирательно проницаемых мембран.

Потеря тургора вызывает завядание растения. При завядании на воздухе в условиях недостаточного водоснабжения тонкие стенки клеток сморщиваются одновременно с протопластом и делаются складчатыми.

Тургорное давление не только поддерживает форму неодревесневших частей растений, оно является также одним из факторов роста клетки, обеспечивая рост клеток растяжением , т. е. за счет поглощения воды и увеличения размера вакуоли. У животных клеток центральная вакуоль отсутствует, их рост происходит главным образом за счет увеличения количества цитоплазмы, поэтому размер животных клеток обычно меньше, чем растительных.

Центральная вакуоль возникает путем слияния многочисленных мелких вакуолей, которые имеются в меристематических (эмбриональных) клетках. Эти цитоплазматические вакуоли образуются, как считают, за счет мембран эндоплазматической сети или аппарата Гольджи.

Вакуоли есть почти во всех взрослых живых растительных клетках.

Они представляют собой полости внутри протопласта, заполненные обычно водянистым содержимым - клеточным соком. Так как вакуоли образуются в результате обмена веществ протопласта, то их форма, размеры и состояние определяются состоянием самого протопласта. В очень молодых, эмбриональных клетках протопласт обычно занимает весь объем клетки и вакуолей нет. В более взрослых клетках наблюдаются многочисленные очень мелкие (2-10 мк) вакуоли, равномерно распределенные в цитоплазме. Ядро обычно лежит в центре клетки. При рассматривании в световой микроскоп эти мелкие вакуоли имеют вид отдельных изолированных зерен или тонких изогнутых нитей, по форме напоминающих митохондрии. Благодаря своей многочисленности они придают цитоплазме пенистый вид. Содержимое их отличается довольно высокой плотностью и вязкостью и представляет собой гидрогель, образованный, по-видимому, гидрофильными белками. При постепенном переходе клетки во взрослое состояние, что выражается прежде всего в ее росте, объем клетки сильно увеличивается, тогда как объем цитоплазмы увеличивается незначительно. Этот процесс, называемый процессом растяжения клетки , связан с накоплением большого количества воды, поглощаемой клеткой извне, и ростом оболочки. Цитоплазма, поглощая воду, выделяет ее затем в вакуоли вместе с продуктами своей жизнедеятельности - продуктами обмена, в виде клеточного сока. При этом мелкие вакуоли растут, содержимое их разжижается, они сливаются друг с другом и число их уменьшается. Отдельные вакуоли часто принимают неправильную форму, изменяемую движением цитоплазмы. Наконец, во взрослой клетке, достигшей своего окончательного размера, все вакуоли сливаются в одну центральную вакуолю, а протопласт оттесняется к оболочке, облекая вакуолю в виде тонкого постенного слоя. Как показали электронномикроскопические исследования, толщина этого постенного слоя цитоплазмы может быть значительно меньше толщины первичной оболочки и митохондрий. Это наблюдается, например, в клетках основной паренхимы стебля, толщина слоя цитоплазмы которых находится на пределе разрешающей способности светового микроскопа (около 0,2 мк). В этих клетках плазмалемма и тонопласт до такой степени сближаются друг с другом, что клеточные органоиды (митохондрии и пластиды), зажатые между ними, изменяют свою форму.

В постенном слое цитоплазмы располагаются ядро и другие органоиды клетки. Иногда ядро занимает центр клетки, окружающая его цитоплазма соединяется с постенной цитоплазмой тяжами, проходящими через полость вакуоли. Кроме цитоплазмы, вакуолеподобные образования могут возникать при особых условиях и в других органоидах, например, в пластидах и в ядре.

Присутствие одной крупной вакуоли, заполненной клеточным соком, является характерной особенностью дифференцированной (взрослой) растительной клетки, которая остается живой к моменту зрелости. Объем такой вакуоли обычно значительно больше объема всех других клеточных компонентов, вместе взятых, и часто почти равен объему всей клетки. Так, вакуоли клеток сочных органов растений нередко занимают свыше 90% объема клетки.

Для некоторых растительных групп (семейства кактусовых, толстянковых, орхидных) характерно накопление в клеточном соке слизистых веществ, также являющихся углеводами. Очень часто в состав клеточного сока входят глюкозиды (миндаль, наперстянка) и алкалоиды (мак, кофе, чай). Первые представляют собой соединения глюкозы со спиртами, альдегидами и другими веществами, не содержащими азот, а вторые - азотистые вещества сложного состава. Роль их в обмене веществ не выяснена. Они имеют горький вкус и в определенных количествах ядовиты для животных, предохраняя таким образом растение от поедания. В то же время многие из них представляют собой ценные лекарства, например атропин, - у белладонны, морфин и кодеин - у мака, хинин - у хинного дерева.

В клеточном соке очень часто встречаются дубильные вещества - танниды . Это сложные органические безазотистые соединения вяжущего вкуса, сильно преломляющие свет. Клеточный сок, содержащий танниды, отличается высокой вязкостью. Особенно богаты дубильными веществами клетки коры (дуб, ива, ель), листья чая, семена кофе. При отмирании клетки танниды окисляются, пропитывают клеточную оболочку и придают ей темно-коричневый цвет. Значение дубильных веществ в жизни самого растения выяснено недостаточно. Они обладают антисептическими свойствами и поэтому служат защитными веществами против нападения различных микроорганизмов. Техническое значение таннидов состоит в том, что с их помощью дубят кожу, после чего она становится мягкой, не ослизняющейся и не пропускает воду.

Все эти вещества, растворенные в клеточном соке, как правило, бесцветны и их выявляют лишь специальными реактивами. Поэтому клеточный сок может быть и бесцветным, и окрашенным в различные цвета, благодаря присутствию растворимых в воде пигментов. Наиболее распространенные пигменты клеточного сока - антоцианины и флавоны - относятся к группе глюкозидов. Чаще всего они сосредоточены в клеточном соке наружных слоев клеток высших растений. Антоцианины обусловливают красный цвет корнеплодов и листьев столовой свеклы, красный, пурпуровый или синий цвет лепестков многих цветков и других частей растений. Особенно часто они встречаются в клетках проростков и молодых растений, которые приобретают поэтому красноватые тона. Различие в оттенках цвета - от фиолетового до красного - связано с различной реакцией клеточного сока: если реакция кислая, то господствуют красные тона, при нейтральной реакции - фиолетовые, а при слабощелочной- синие. Присутствием антоцианов объясняется и цвет плодов вишни, сливы, винограда. Желтый цвет цветков, например, лепестков льнянки, желтой георгины связан с присутствием в клеточном соке пигментов группы флавонов.

Значение пигментов клеточного сока в обмене веществ выяснено недостаточно. Находясь в клетках лепестков и вызывая их яркую окраску, пигменты выполняют функцию привлечения насекомых-опылителей. Так как они сильно поглощают ультрафиолетовые лучи, то возможно, что молодые части растений благодаря этому защищены от вредного действия этих лучей.

Состав, концентрация и вязкость клеточного сока у разных видов растений различны и изменяются даже в одном растении от органа к органу, от ткани к ткани и от клетки к клетке. Поэтому за исключением воды не все клетки накапливают в вакуолях все перечисленные вещества. Многие из веществ клеточного сока, например, алкалоиды, глюкозиды встречаются только у некоторых групп растений, другие же вещества распространены более широко. Весьма часто в клеточном соке отдельных специализированных взрослых клеток накапливается практически только один продукт обмена веществ, но в больших количествах. Например, дубильные вещества накапливаются в особых крупных клетках - вместилищах , рассеянных в коре и древесине. В клеточном соке некоторых клеток могут накапливаться большие количества слизи, растворимых белков (слизевые и белковые вакуоли).

На состав и свойства клеточного сока большое влияние оказывают возраст клетки (и самого растения) и окружающие условия. Например, незрелые сочные плоды, обычно зеленые, кислые и часто вяжущие, по созревании меняют свою окраску и вкус (вишня, различные ягоды и др.). Это связано с тем, что по мере созревания плодов уменьшается содержание органических кислот, вызывающих кислый вкус, дубильных веществ, вызывающих вяжущий вкус, и накапливаются сахара. Накапливание антоцианинов особенно интенсивно происходит в листьях осенью при сухой, солнечной и прохладной погоде, когда желтеющие листья приобретают красивые красноватые оттенки, обусловленные накоплением антоцианинов.

Несмотря на то, что вакуоли с клеточным соком не обладают свойствами живого, тем не менее их значение в жизни клетки и растения очень разнообразно. Прежде всего вакуоля вместе с цитоплазмой выполняет функцию поглощения воды и растворов и передвижения их по растению. Поглощенная клеточным соком вода придает клетке упругое состояние (тургор). Тургор обеспечивает сохранение сочными органами определенной формы и положения в пространстве, а также сопротивление их действию механических факторов. Вакуоли служат также резервуарами запасной воды. Растворенные в клеточном соке соли, органические кислоты, углеводы и белки могут вновь использоваться в обмене веществ протопласта.

Механизм заложения вакуолей еще полностью не выяснен. Электронномикроскопические исследования показали, что во взрослой клетке вакуоли отграничены от цитоплазмы одной мембраной- тонопластом. Иногда, если в клетке несколько крупных вакуолей, то у них наблюдаются длинные трубки, вытягивающиеся в сторону цитоплазмы, причем трубки часто напоминают контуры гладкой эндоплазматической сети.

В молодых клетках, как видно на некоторых электронограммах, обнаруживаются многочисленные местные расширения межмембранного пространства эндоплазматической сети. Эти клетки при рассматривании в световой микроскоп имеют мельчайшие вакуоли, напоминающие по форме те, которые получились на электронограммах. Это дало основание некоторым ученым выдвинуть гипотезу, согласно которой вакуоли закладываются в результате местных расширений межмембранного промежутка эндоплазматической сети. В пользу этой точки зрения свидетельствует и наличие одной мембраны вокруг вакуолей. Однако до сих пор не удалось получить электронограмм, показывающих на одном срезе непрерывность ядерной оболочки, эндоплазматической сети и вакуолей. Поэтому была развита и другая гипотеза, согласно которой в отдельных участках гиалоплазмы происходит местная гидратация (оводнение) белков без всякой связи с эндоплазматической сетью. В гиалоплазме эмбриональных клеток на электронограммах были обнаружены отдельные более светлые участки, не ограниченные сначала мембраной и содержащие остатки цитоплазмы. Эти участки и считают зачатками вакуолей. При последующем слиянии этих маленьких капелек в более взрослых клетках возникал тонопласт, и вакуоля принимала типичную форму. Возникновение трубчатых удлинений у крупных вакуолей, выступающих в гиалоплазму, по этой гипотезе, объясняется деформацией вакуолей в результате движения цитоплазмы. Ограниченные мембраной структуры с признаками вакуолей были найдены в контакте с диктиосомами или близко от них. Это послужило основанием для гипотезы, согласно которой вакуоли образуются путем разбухания межмембранного пространства наружных цистерн диктиосом. При этом мембраны диктиосомы становятся мембранами тонопласта.

Какая из этих гипотез соответствует действительности, должны показать дальнейшие исследования. Вполне возможно, что существование различных гипотез объясняется различными путями заложения вакуолей.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вакуоли и их значение для клеток

Вакуоли - одномембранных оргонелы, заполненные жидкостью. Образуются вакуоли с пузырьков ЭПС или КГ. Располагаются в цитоплазме прокариотических клеток (например, газовые вакуоли), клетках животных (например, мае и сократительные вакуоли), растений (осморегуляторных, запасающие вакуоли). Особенно хорошо развиты вакуоли в клетках растений, где занимают большую часть клетки. Мембрана, что их окружает, называется тонопластом, а водный содержание - клеточным соком. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растения и функций вакуолей. Клеточный сок запасающих вакуолей содержит глюкозу, фруктозу, сахарозу, органические кислоты (яблочную, лимонную), некоторые аминокислоты и гидрофильные белки и др. Хорошо развиты эти вакуоли в клетках арбуза, винограда, сахарной свеклы, яблок и т. В клеточном соке многих растений из семей маковых, пасленовых содержатся алкалоиды, которые защищают их от поедания животными. В вакуолях часто накапливаются и изолируются продукты обмена. Например, оксалат кальция откладывается в виде кристаллов различной формы. В клеточном соке растений могут находиться и такие соединения, как антоцианы. Антоцианы - это группа растительных водорастворимых пигментов, которые по своему химическому строению является гликозидами. Они очень распространены в природе, имеют красный, оранжевый, фиолетовый, синий цвета и поэтому определяют окраску многих плодов (сливы, черешни), корнеплодов (свекла, редис), цветов (медуница, георгины), листьев (бегонии) растений. Цвет антоцианов может меняться в зависимости от pH среды: в кислой окраска красная, в нейтральной - фиолетовое, в щелочной - синий. Поэтому медуница во время своего цветения меняет окраску от розового до синего.

Функции. В клетках вакуоли выполняют очень разные функции: переваривания сложных органических веществ (пищеварительные вакуоли одноклеточных животных), удаление избытка воды и продуктов обмена (сократительные вакуоли пресноводных водорослей и одноклеточных животных), запасания веществ (клетки грибов и растений), поддержание постоянной формы клетки (благодаря тургора, который осуществляется с привлечением водного содержания осморегуляторных вакуолей), накопление токсических продуктов обмена ("изолирующие" вакуоли щавеля), защита от поедания (алкалоиды в вакуолях пасленовых) и др.

Единственная мембранная система клеток

Единственная мембранная система - это комплекс мембранных структур, связанных между собой пространственно и функционально. Пространственный связь органелл в единой мембранной системе реализуется через сочетание плазматической мембраны с ЭПС, мембранами ЭПС с участками КГ, ЭПС и вакуолей, КГ с лизосомами и Пероксисомы. Поэтому в состав ЕВС входят:

ЭПС, КГ, лизосомы, вакуоли, пероксисомы. Функциональная связь этих органелл в клетке можно продемонстрировать на примере секреции пищеварительных ферментов в клетке поджелудочной железы в гранулярной ЭПС из аминокислот синтезируется белок → накапливается в КГ, где происходит синтез неактивных пищеварительных ферментов → концентрирования ферментов в пузырьках Гольджи (секреторные гранулы) → переноса их к плазматической мембраны → слияния пузырьков с мембраной и выделение ферментов.

Сегодня мы с вами узнаем, что такое полость, заполненная клеточным соком. То есть, мы рассмотрим назначение в организме вакуолей. Как известно, клетка - это элементарная структурная единица всего, что нас окружает. Но она состоит из большого количества органоидов. Одна из них выглядит как полость, заполненная клеточным соком, и имеет она название вакуоли.

Функции данной органеллы очень разнообразны, мы обязательно уделим внимание данной теме. А сейчас необходимо понять то, что клетка, благодаря своим органеллам, способна к самостоятельному существованию. Этим мельчайшим частичкам не обязательно объединяться в какие-либо сложноорганизованные структуры. Она обладает рядом свойств, которые позволяют ей существовать самостоятельно. Сейчас перейдем к рассмотрению одной из частей, выполняющей немалую роль в

Вакуоль

Итак, мы уже сказали, что полость, заполненная клеточным соком, имеет название вакуоль. Этот органоид заполнен водным раствором различных веществ, среди которых мы можем обнаружить и органические, и неорганические. Для создания вакуолей необходимо участие:

  • Аппарата Гольджи.

Начнем с того, что все растительные клетки содержат данные органеллы, только в молодых их намного больше. Почему это происходит? В результате роста происходит их слияние, что приводит к образованию центральной вакуоли. Очень важно отметить и то, что зрелая практически полностью заполнена этой вакуолью (более 90 процентов). При этом все прочие органоиды и ядро клетки перемещаются к оболочке.

Вакуоль ограничивается тонопластом, так называется мембрана данного органоида растительной клетки. Та жидкость, которая находится внутри вакуоли, - это клеточный сок.

Таким образом, полость, заполненная клеточным соком и имеющая размеры более 90 процентов полости всей клетки, - это центральная вакуоль. В состав этого сока входит очень большое количество веществ, среди которых:

  • соли;
  • моносахариды;
  • дисахариды;
  • аминокислоты;
  • гликозиды;
  • алкалоиды;
  • антоцианы и так далее.

Функции


Полость клетки, заполненная клеточным соком, имеет название - вакуоль. Она выполняет множество различных функций. Сейчас мы предлагаем их рассмотреть. Для начала предоставим вам их в виде списка:

  • Поглощение воды. Вода необходима для растения и поддержания жизни растений. Также молекулы Н2О необходимы для фотосинтеза растений.
  • Окраска растений. Это становится возможным из-за наличия веществ антоцианов. Они обладают способностью окрашивать органы растения (плоды, цветы, листья).
  • Вывод токсичных веществ. В вакуолях происходит откладывание кристаллов оксалата. Некоторые вторичные метаболиты обладают и хорошими (полезными) качествами, например, придают растениям горький вкус и спасают их от поедания.
  • Запас питательных веществ. Клетка может при необходимости воспользоваться запасами вакуоли, так как она запасает ряд полезных для клетки веществ.
  • Расщепление старых частей клетки посредством выработки млечного сока.

Вакуоли в животных клетках


Мы уже сказали, что полость в цитоплазме, заполненная клеточным соком, - это вакуоль. Но до этого раздела было сказано только о растительных клетках. Сейчас мы с вами познакомимся с функциями данной органеллы в животных.

Вакуоли присутствуют у большинства простейших организмов. Так, например, пульсирующие находятся у пресноводных и служат для осмотической регуляции. У некоторых многоклеточных позвоночных и одноклеточных есть пищеварительные вакуоли, которые содержат большое количество различных ферментов. Важно знать еще и то, что у высших животных данные органеллы образуются в фагоцитах.

Различие между растительной и животной клетками

Мы уже сказали, что органоиды, представляющие собой полости, заполненные клеточным соком, встречаются как в растительных, так и в животных клетках. В чем же их отличие? Важно понимать, что в клетке они находятся не в единственном количестве. В растительной они занимают 95 процентов, а в животной - всего 5 процентов.