Стандартная модель фундаментальных взаимодействий. FAQ: Стандартная модель Фундаментальные частицы стандартной модели

Недавнее открытие группы ученых во главе с Жоакимом Матиасом впервые серьезно поколебало основу современной физики частиц, а именно — Стандартную модель. Исследователям удалось предсказать нестандартный вариант распада частицы B-мезона, который данная модель не учитывает. Более того, практически сразу их догадки были подтверждены экспериментально.

Следует заметить, что в последнее время физики, занимающиеся изучением элементарных частиц, все чаще говорят о том, что этой дисциплине уже стало тесновато в рамках привычной всем Стандартной модели. Действительно, уже зарегистрировано много явлений, которые в ее рамках объяснить сложно. Например, эта модель не может предсказать, какие частицы могут составлять темную материю, а также не дает ответа на вопрос, который уже давно мучает ученых — почему в нашей Вселенной вещества больше, чем антивещества (барионная асимметрия). Да и эрзионная интерпретация процесса холодной трансмутации ядер, о которой мы не так давно писали, тоже выходит за пределы "действия" той самой Стандартной модели.

Тем не менее, все-так большинство физиков до сих пор придерживаются именно этого способа объяснения загадочной жизни элементарных частиц. Отчасти из-за того, что пока ничего лучшего никто не создал, отчасти же потому, что большая часть предсказаний Стандартной модели все-таки имеет экспериментальное подтверждение (чего нельзя сказать об альтернативных гипотезах). Более того, до последнего времени найти в экспериментах серьезные отклонения от этой модели все-таки не удавалось. Впрочем, похоже не так давно это все-таки случилось. Подобное может означать рождение совершенно новой теории физики частиц, согласно которой нынешняя Стандартная модель будет выглядеть частным случаем — так же, как ньютоновская теория всемирного тяготения выглядит частным случаем гравитации в рамках общей теории относительности.

А началось все с того, что международная группа физиков во главе с Жоакимом Матиасом сделали несколько предсказаний о том, какие именно отклонения по вероятности распада B-мезона могут расходиться со Стандартной моделью и свидетельствовать о новой физике. Напомню, что B-мезоном называют частицу, состоящую из b-кварка и d-антикварка. Согласно положениям Стандартной модели, эта частица может распадаться на мюон (отрицательно заряженная частица, по сути дела — очень тяжелый электрон) и антимюон, хотя вероятность подобного события не слишком велика. Тем не менее, в прошлом году на конференции в Киото физики, работающие на Большом адронном коллайдере сообщили, что им удалось зафиксировать следы подобного распада (причем с той вероятностью, что и была предсказана теоретически).

Группа Матиаса же посчитала, что этот мезон должен распадаться несколько по другому — на пару мюонов и неизвестную пока что частицу K*, которая почти сразу распадается на каон и пион (два более легких мезона). Примечательно, что о результатах своих изысканий ученые доложили 19 июля на собрании Европейского физического общества и следующий же докладчик из тех, кто выступал на данном мероприятии (это был физик Николя Серра из коллаборации LHCb с Большого адронного коллайдера) сообщил, что его группе удалось зафиксировать следы таких распадов. Более того, экспериментальные результаты группы Серра практически полностью совпали с отклонениями, предсказанными в докладе доктора Матиаса и его соавторов!

Интересно, что физики оценивают эти результаты со статистической значимостью в 4,5σ, а это означает, что достоверность описанного события весьма и весьма велика. Напомню, что экспериментальные свидетельства в три σ рассматриваются как результаты существенной значимости, а пять σ считаются вполне себе состоявшимся открытием — именно такое значение достоверности было присвоено результатам прошлогодних экспериментов, которые наконец-то обнаружили следы существования бозона Хиггса.

Тем не менее, сам доктор Матиас считает, что пока не стоит спешить с выводами. "Для подтверждения этих результатов потребуются дополнительные теоретические исследования, равно как и новые замеры. Однако если наши выводы действительно верны, мы окажемся перед лицом первого прямого подтверждения существования новой физики — теории более общей, чем общепринятая Стандартная модель. Если бозон Хиггса позволил наконец-то сложить пазл Стандартной модели, то эти результаты могут быть первым кусочком нового пазла — куда большего размера" — говорит ученый.

Положения

Стандартная модель состоит из следующих положений:

  • Всё вещество состоит из 24 фундаментальных квантовых полей спина ½, квантами которых являются фундаментальные частицы -фермионы , которые можно объединить в три поколения фермионов: 6 лептонов (электрон , мюон , тау-лептон , электронное нейтрино , мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц.
  • Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) - в слабых и электромагнитных; нейтрино - только в слабых взаимодействиях.
  • Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований. Частицами-переносчиками взаимодействий являются бозоны :
8 глюонов для сильного взаимодействия (группа симметрии SU(3)); 3 тяжёлых калибровочных бозона (W + , W − , Z 0) для слабого взаимодействия (группа симметрии SU(2)); один фотон для электромагнитного взаимодействия (группа симметрии U(1)).
  • В отличие от электромагнитного и сильного, слабое взаимодействие может смешивать фермионы из разных поколений, что приводит к нестабильности всех частиц, за исключением легчайших, и к таким эффектам, как нарушение CP-инвариантности и нейтринные осцилляции .
  • Внешними параметрами стандартной модели являются:
    • массы лептонов (3 параметра, нейтрино принимаются безмассовыми) и кварков (6 параметров), интерпретируемые как константы взаимодействия их полей с полем бозона Хиггса ,
    • параметры CKM-матрицы смешивания кварков - три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию - константы взаимодействия кварков с электрослабым полем,
    • два параметра поля Хиггса , которые связаны однозначно с его вакуумным средним и массой бозона Хиггса ,
    • три константы взаимодействия, связанные соответственно с калибровочными группами U(1), SU(2) и SU(3), и характеризующие относительные интенсивности электромагнитного, слабого и сильного взаимодействий.

В связи с тем, что обнаружены нейтринные осцилляции , стандартная модель нуждается в расширении, которое вводит дополнительно 3 массы нейтрино и как минимум 4 параметра PMNS-матрицы смешивания нейтрино , аналогичные CKM-матрице смешивания кварков, и, возможно, ещё 2 параметра смешивания, если нейтрино являются майорановскими частицами . Также в число параметров стандартной модели иногда вводят вакуумный угол квантовой хромодинамики. Примечательно, что математическая модель с набором из 20 с небольшим чисел способна описать результаты миллионов проведённых к настоящему времени в физике экспериментов.

За пределами Стандартной модели

См. также

Примечания

Литература

  • Емельянов В. М. Стандартная модель и ее расширения. - М .: Физматлит, 2007. - 584 с. - (Фундаментальная и прикладная физика). - ISBN 978-5-922108-30-0

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Стандартная модель" в других словарях:

    СТАНДАРТНАЯ МОДЕЛЬ, модель ЭЛЕМЕНТАРНЫХ ЧАСТИЦ и их взаимодействий, представляющая собой наиболее полное описание физических явлений, связанных с электричеством. Частицы делятся на АДРОНЫ (под воздействием ЯДЕРНЫХ СИЛ превращающиеся в КВАРКИ),… … Научно-технический энциклопедический словарь

    В физике элементарных частиц, теория, согласно к рой осн. (фундамент.) элементарными частицами являются кварки и лептоны. Сильное взаимодействие, посредством к рого кварки связываются в адроны, осуществляется путём обмена глюонами. Электрослабое… … Естествознание. Энциклопедический словарь

    - … Википедия

    Стандартная модель международной торговли - наиболее широко используемая в настоящее время модель международной торговли, раскрывающая воздействие внешней торговли на основные макроэкономические показатели торгующей страны: производство, потребление, общественное благосостояние … Экономика: глоссарий

    - (Heckscher Ohlin model) Стандартная модель внешней торговли между странами (intra industry trade) с разной отраслевой структурой, названная по фамилиям ее шведских создателей. Согласно этой модели, страны имеют одни и те же производственные… … Экономический словарь

    Научная картина мира (НКМ) (одно из основополагающих понятий в естествознании) особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий. Будучи целостной системой представлений об общих… … Википедия

    Стандартная библиотека языка программирования С assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h … Википедия

    СТАНДАРТНАЯ КОНЦЕПЦИЯ НАУКИ форма логико методологического анализа естественнонаучных теорий, разработанная под значительным влиянием неопозитивистской философии науки. В рамках стандартной концепции науки свойства теории (трактуемой как… … Философская энциклопедия

    Форма логико методологического анализа естественнонаучных теорий, разработанная под значительным влиянием неопозитивистской философии науки. В рамках стандартной концепции науки свойства теории (трактуемой как множество научно осмысленных… … Философская энциклопедия

Книги

  • Физика частиц - 2013. Квантовая электродинамика и Стандартная модель , О. М. Бояркин, Г. Г. Бояркина. Во втором томе двухтомника, содержащего современный курс физики элементарных частиц, в качестве первого примера теории реальных взаимодействий рассматривается квантовая электродинамика.…
Бессмысленно продолжать делать то же самое и ждать других результатов.

Альберт Эйнштейн

Стандартная модель (элементарных частиц) (англ. Standard model of elementary particles ) - не соответствующая природе теоретическая конструкция, описывающая одну из компонент электромагнитных взаимодействий искусственно выделенную в электромагнитное взаимодействие, воображаемое слабое и гипотетическое сильное взаимодействия всех элементарных частиц. Стандартная модель не включает в себя гравитацию.

Сначала небольшое отступление. Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок. Сказочные кварки со сказочными глюонами, сказочными гравитонами и сказками "Квантовой теории" (выдаваемые за действительность) уже проникли в учебники физики - будем обманывать детей? Сторонники честной Новой физики пытались этому противостоять, но силы были не равны. И так было до 2010 года до появления полевой теории элементарных частиц, когда борьба за возрождение ФИЗИКИ-НАУКИ перешла на уровень открытого противостояния подлинной научной теории с математическими сказками, захватившими власть в физике микромира (да и не только).

Картинка взята из мировой Википедии

Первоначально, кварковая модель адронов была предложена в 1964 году независимо Гелл-манном и Цвейгом и ограничивалась только тремя гипотетическими кварками и их античастицами. Это позволяло правильно описать спектр известных на тот момент элементарных частиц, без учета лептонов, которые не вписались в предлагаемую модель и потому признавались элементарными, наравне с кварками. Платой за это явилось введение, не существующих в природе, дробных электрических зарядов. Затем, по мере развития физики и поступления новых экспериментальных данных, кварковая модель постепенно разрасталась, трансформировалась, приспосабливаясь под новые экспериментальные данные, в итоге превратившись в Стандартную модель. - Интересно, что четырьмя годами позднее, в 1968 году я начал работать над идеей, которая в 2010 году дала человечеству Полевую теорию элементарных частиц , а в 2015 году - Теорию гравитации элементарных частиц , отправив в архив истории развития физики многие математические сказки физики второй половины двадцатого века, в том числе и эту.


    1 Основные положения Стандартной модели элементарных частиц
    2 Стандартная модель и фундаментальные взаимодействия
    3 Стандартная модель и калибровочные бозоны
    4 Стандартная модель и глюоны
    5 Стандартная модель и закон сохранения энергии
    6 Стандартная модель и электромагнетизм
    7 Стандартная модель и полевая теория элементарных частиц
    8 Частицы в физике глазами мировой Википедии начала 2017 года
    9 Стандартная модель и подгонка под действительность
    10 Физика 21 века: Стандартная модель - итог

1 Основные положения Стандартной модели элементарных частиц

Предполагается, что всё вещество состоит из 12 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино) и 6 кварков (u, d, s, c, b, t).

Утверждается, что кварки участвуют в сильном, слабом и электромагнитном (с понимании квантовой теории) взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) - в слабом и электромагнитном; нейтрино - только в слабом взаимодействии.

Постулируется, что все три типа взаимодействий возникают как следствие того, что наш мир симметричен относительно трёх типов калибровочных преобразований.

Утверждается, что частицами-переносчиками взаимодействий, вводимых моделью, являются:

  • 8 глюонов для гипотетического сильного взаимодействия (группа симметрии SU(3));
  • 3 тяжёлых калибровочных бозона (W ± -бозоны, Z 0 -бозон) для гипотетического слабого взаимодействия (группа симметрии SU(2));
  • 1 фотон для электромагнитного взаимодействия (группа симметрии U(1)).

Утверждается, что гипотетическое слабое взаимодействие может смешивать фермионы из разных поколений, что это приводит к нестабильности всех частиц, за исключением легчайших, а также к таким эффектам, как нарушение CP-инвариантности и гипотетические нейтринные осцилляции.


2 Стандартная модель и фундаментальные взаимодействия

Реально в природе существуют следующие типы фундаментальных взаимодействий, как и соответствующие им физические поля:

Наличие в природе иных реально существующих фундаментальных физических полей, кроме конечно сказочных полей (полей квантовой "теории": глюонное, поле Хиггса и ан.), физика не установила (зато в математике их может быть сколько угодно). Существование в природе гипотетического сильного и гипотетического слабого взаимодействия постулированного квантовой теорией - не доказано , и обосновано только желаниями Стандартной модели. Эти гипотетические взаимодействия являются всего лишь предположениями. - В природе имеются ядерные силы, которые сводятся к (реально существующим в природе) электромагнитным взаимодействиям нуклонов в атомных ядрах, ну а нестабильность элементарных частиц определяется наличием каналов распада и отсутствием запрета со стороны законов природы, а со сказочным слабым взаимодействием никак не связана.

Не доказано существование в природе ключевых элементов Стандартной модели: кварков и глюонов . То, что в экспериментах интерпретируется некоторыми физиками как следы кварков - допускает и иные альтернативные толкования. Природа так устроена, что число гипотетических кварков совпало с числом стоячих волн переменного электромагнитного поля внутри элементарных частиц. - Но в природе нет дробного электрического заряда, равного заряду гипотетических кварков. Даже величина дипольного электрического заряда, не совпадает с величиной воображаемого электрического заряда вымышленных кварков. А как понимаете, без кварков Стандартная модель существовать не может .

Из того, что в 1968 году в экспериментах по глубоко неупругому рассеянию на Стэнфордском линейном ускорителе (SLAC) подтвердили, что протоны имеют внутреннюю структуру, и состоят из трех объектов (двух u- и одного d-кварка - а вот это НЕ доказано ), которые впоследствии, Ричард Фейнман назвал партонами в рамках его партонной модели (1969 г.), можно сделать еще один вывод - в экспериментах наблюдались стоячие волны волнового переменного электромагнитного поля, число пучностей которых как раз и совпадает с числом сказочных кварков (партонов). А хвастливое заявление мировой Википедии, что «вся совокупность нынешних экспериментальных фактов не подвергает сомнению справедливость модели» является лживым .

3 Стандартная модель и калибровочные бозоны

  • Существование калибровочных бозонов в природе не доказано - это всего лишь предположения квантовой теории. (W ± -бозоны, Z 0 -бозон) являются обыкновенными векторными мезонами такими же, как D-мезоны.
  • Квантовой теории потребовались переносчики постулированных ей взаимодействий. Но поскольку таковых в природе не оказалось - были взяты наиболее подходящие из бозонов и приписана способность быть переносчиками требуемого гипотетического взаимодействия.

4 Стандартная модель и глюоны

Дело в том, что с гипотетическими глюонами у Стандартной модели получился конфуз.

Вспомним, что такое глюон - это гипотетические элементарные частицы, отвечающие за взаимодействия гипотетических кварков. Говоря математическим языком, глюонами называют векторные калибровочные бозоны, отвечающие за гипотетическое сильное цветовое взаимодействие между гипотетическими кварками в квантовой хромодинамике. При этом гипотетические глюоны, как предполагается, сами несут цветовой заряд и таким образом являются не просто переносчиками гипотетического сильных взаимодействий, но и сами участвуют в них. Гипотетический глюон является квантом векторного поля в квантовой хромодинамике, не имеет массы покоя и обладает единичным спином (как фотон). Кроме того гипотетический глюон является античастицей самому себе.

Итак, утверждается, что глюон обладает единичным спином (как фотон) и является античастицей самому себе. - Так вот: согласно Квантовой механики и Классической электродинамики (и Полевой теории элементарных частиц, умудрившейся заставить их работать сообща на общий результат), определивших спектр элементарных частиц в природе - обладать единичным спином (как фотон) и быть античастицей самой себе может только одна элементарная частица в природе - фотон , но она уже занята электромагнитными взаимодействиями. Все остальные элементарные частицы с единичным спином это векторные мезоны и их возбужденные состояния, но это совсем другие элементарные частицы, каждая из которых обладает собственной античастицей.

А если вспомнить, что у всех векторных мезонов отличная от нуля величина массы покоя (следствие ненулевой величины квантового числа L полевой теории), то ни один из векторных мезонов (частиц с целым спином) в качестве сказочного глюона никак не подойдет. Ну а элементарных частиц с единичным спином больше в природе НЕТ. В природе могут существовать сложные системы, состоящие из четного числа лептонов, или барионов! Но время жизни таких образований из элементарных частиц будет значительно меньше времени жизни сказочного бозона Хиггса - а точнее векторного мезона. Поэтому гипотетические глюоны не могут быть найдены в природе, сколько бы их не искали и сколько миллиардов Евро или долларов на поиски сказочных частиц не потратили. А если где-то прозвучит утверждение об их обнаружении - это будет НЕ соответствовать действительности.

Следовательно, в природе нет места для глюонов . Создав сказку о сильном взаимодействии, взамен реально существующих в природе ядерных сил, по аналогии с электромагнитным взаимодействием, "Квантовая теория" и "Стандартная модель", будучи уверенными в своей непогрешимости, сами загнали себя в ТУПИК. - Так может, пора остановиться, и перестать верить математическим СКАЗКАМ.

5 Стандартная модель и закон сохранения энергии

Осуществление взаимодействий элементарных частиц путем обмена виртуальными частицами напрямую нарушает закон сохранения энергии и всякие математические манипуляции над законами природы в науке недопустимы. Природа и виртуальный мир математики - это два разных мира: реально существующий и вымышленный - мир математических сказок.

Глюоны - гипотетические переносчики гипотетического сильного взаимодействия гипотетических кварков, обладающие сказочной способностью создавать новые глюоны из ничего (из вакуума) (см. статью конфайнмент), открыто игнорируют закон сохранения энергии.

Таким образом, стандартная модель противоречит закону сохранения энергии .

6 Стандартная модель и электромагнетизм.

Стандартная модель, сама того не желая, вынуждена была признать наличие у элементарных частиц постоянных дипольных электрических полей, о существовании которых утверждает Полевая теория элементарных частиц. Утверждая, что элементарные частицы состоят из гипотетических кварков, являющихся (по мнению Стандартной модели) носителями электрического заряда, Стандартная модель тем самым признала наличие внутри протона кроме области с положительным электрическим зарядом еще и области с отрицательным электрическим зарядим, и наличие пары областей с разноименными электрическими зарядами и у электрически «нейтрального» нейтрона. Что удивительно, величины электрических зарядов данных областей почти совпали с величинами электрических зарядов, вытекающих из полевой теории элементарных частиц.

Так Стандартной модели удалось неплохо описать внутренние электрические заряды нейтральных и положительно заряженных барионов, а вот с отрицательно заряженными барионами вышла осечка. Поскольку заряд отрицательно заряженных гипотетических кварков равен –e/3, то для получения суммарного заряда –e потребуется три отрицательно заряженных кварка, а дипольное электрическое поле, аналогичное электрическому полю протона, не получится. Конечно, можно было бы воспользоваться анти-кварками, но тогда вместо бариона получится анти-барион. Так что «успех» Стандартной модели в описании электрических полей барионов ограничился только нейтральными и положительно заряженными барионами.

Если посмотреть гипотетическую кварковую структуру мезонов с нулевым спином, то электрические дипольные поля получаются только у нейтральных мезонов, а у заряженных мезонов из двух гипотетических кварков электрическое дипольное поле не создать – заряды НЕ позволяют. Так что при описании электрических полей мезонов с нулевым спином, у Стандартной модели получились только электрические поля нейтральных мезонов. Здесь также, величины электрических зарядов дипольных областей почти совпали с величинами электрических зарядов, вытекающих из полевой теории элементарных частиц.

Но есть еще одна группировка элементарных частиц под названием векторные мезоны – это мезоны с единичным спином, у которых каждая частица обязательно имеет свою античастицу. Экспериментаторы уже начали их открывать в природе, но Стандартная модель, чтобы не разбираться с их строением, предпочитает навесить на некоторые из них ярлыки переносчиков выдуманных ей взаимодействий (спин равен единице – то, что надо). Здесь у Стандартной модели получились только электрические поля нейтральных мезонов, поскольку число кварков не изменилось (у них просто повернули спины, чтобы они не вычитались, а складывались).
Подведем промежуточный итог. Успех Стандартной модели в описании структуры электрических полей элементарных частиц оказался половинчатым. Оно и понятно: подгонка в одном месте вылезала расхождением в другом месте.

Теперь относительно величин масс гипотетических кварков. Если сложить величины масс гипотетических кварков в мезонах или в барионах, мы получим небольшой процент от величины массы покоя элементарной частицы. Следовательно, даже в рамках Стандартной модели, внутри элементарных частиц имеется масса не кварковой природы, значительно превышающая суммарную величину масс всех ее гипотетических кварков. Поэтому, утверждение Стандартной модели, что элементарные частицы состоят из кварков, НЕ соответствует действительности . Внутри элементарных частиц имеются более мощные факторы, чем гипотетические кварки, создающие основную величину гравитационной и инертной массы элементарных частиц. Полевая теория элементарных частиц совместно с Теорией гравитации элементарных частиц установили, что за всем этим стоит волновое поляризованное переменное электромагнитное поле, создающие волновые свойства элементарных частиц, определяющее их статистическое поведение и, конечно же, Квантовая механика.

Еще один момент. Почему у связанной системы из двух частиц (кварков) с полуцелым спином, спины частиц обязательно должны быть антипараллельными (потребность в этом Стандартной модели, чтобы получился спин мезонов - это еще не закон природы). Спины взаимодействующих частиц могут быть и параллельными, а тогда получится дубликат мезона, но уже с единичным спином и несколько отличной по величине массой покоя, чего природа естественно создавать не стала - ей нет никакого дела до потребности Стандартной модели с ее сказками. Физика знает взаимодействие, со спин-ориентированной зависимостью - это взаимодействия магнитных полей, таких нелюбимых квантовой "теорией". Значит, если гипотетические кварки существуют в природе, то их взаимодействия магнитные (сказочных глюонов я естественно не вспоминаю) - эти взаимодействия создают силы притяжения, для частиц с антипараллельными магнитными моментами (а значит и антипараллельными спинами, если вектора магнитного момента и спина параллельны) и не позволяют создать связанное состояние пары частиц с параллельными магнитными моментами (параллельной ориентацией спинов), поскольку тогда силы притяжения превращаются в такие же силы отталкивания. Но если энергия связи пары магнитных моментов составляет некоторую величину (0,51 МэВ у π ± и 0,35 МэВ у π 0), то в самих магнитных полях частиц сосредоточено энергии (приблизительно) на порядок больше, а значит и соответствующей ей массы - электромагнитной массы постоянного магнитного поля.

Допустив наличие дипольных электрических полей у элементарных частиц, Стандартная модель забыла про магнитные поля элементарных частиц, существование которых доказано экспериментально, а величины магнитных моментов элементарных частиц измерены с высокой степенью точности.

Нестыковки Стандартной модели с магнетизмом хорошо видны на примере пи-мезонов. Итак, у гипотетических кварков имеются электрические заряды, значит у них имеется и постоянное электрическое поле, а еще у них имеется и постоянное магнитное поле. Согласно законам Классической электродинамики, которую пока еще НЕ отменили, эти поля обладают внутренней энергией, а значит и соответствующей этой энергии массой. Так суммарная магнитная масса постоянных магнитных полей пары гипотетических кварков заряженных π ± -мезонов составляет 5,1 МэВ (из 7,6 МэВ), а у π 0 -мезонов 3,5 МэВ (из 4 МэВ). Добавим к этой массе электрическую массу постоянных электрических полей элементарных частиц, она ведь тоже отлична от нуля. По мере уменьшения линейных размеров зарядов энергия этих полей постоянно возрастает, и очень быстро наступает момент, когда все 100% внутренней энергии гипотетического кварка сосредотачиваются в его постоянных электромагнитных полях. Тогда, что остается самому кварку - ответ: НИЧЕГО, что и утверждает Полевая теория элементарных частиц. И превращаются якобы наблюдаемые "следы гипотетических кварков" в следы стоячих волн переменного электромагнитного поля, чем они в действительности и являются. Но есть одна особенность: стоячие волны волнового переменного электромагнитного поля, то, что Стандартная модель выдает в качестве "Кварков", не могут создавать постоянные электрические и магнитные поля, которые есть у элементарных частиц). Вот мы и приходим к выводу, что кварков в природе НЕТ, а элементарные частицы состоят из волнового поляризованного переменного электромагнитного поля, а также связанных с ним постоянных электрических и магнитных дипольных полей , что и утверждает Полевая теория элементарных частиц.

С величинами массы, Стандартная модель установила наличие у всех пи-мезонов остаточной внутренней энергии, которая согласуется с данными Полевой теории элементарных частиц о содержавшемся внутри элементарных частиц волновом переменном электромагнитном поле. Но если более (95-97)% внутренней энергии элементарных частиц имеет не кварковую природу и сосредоточено в волновом переменном электромагнитном поле, а из остальных (3-5)%, приписываемых гипотетическим кваркам, (80-90)% сосредоточено в постоянных электрических и магнитных полях элементарных частиц, то голословное утверждение о том, что эти элементарные частицы состоят из не найденных в природе кварков - выглядит СМЕХОТВОРНЫМ, даже в рамках самой Стандартной модели .

Кварковый состав протона у Стандартной модели получился еще более плачевным. Суммарная величина массы 2-х u-кварков и одного d-кварка составляет 8,81 МэВ, что составляет менее 1 процента величины массы покоя протона (938,2720 МэВ). То есть, в протоне на 99 процентов есть то, что создает его основную гравитационную и инертную массу вместе с его ядерными силами и это НЕ связано с кварками, но нам, с упорством достойным лучшего применения, продолжают рассказывать псевдонаучную сказку о том, что протон якобы состоит из кварков, которых в природе так и не удалось найти, несмотря на все затраченные усилия и финансовые средства и хотят, чтобы мы поверили этому НАДУВАТЕЛЬСТВУ. - Математика способна сочинить любую СКАЗКУ и выдавать ее за "высшее" достижение "науки". Ну а если воспользоваться наукой, то согласно расчетам полей протона с помощью полевой теории, в его постоянном электрическом поле содержится энергия 3,25 МэВ, а остальная энергия для массы гипотетических кварков позаимствована у значительно более мощного постоянного магнитного поля протона, создающего его ядерные силы.

7 Стандартная модель и полевая теория элементарных частиц

  • Полевая теория элементарных частиц отрицает существование не обнаруженных в природе кварков и глюонов, отрицает существование гипотетических сильного и слабого взаимодействий (постулированных квантовой теорией) и соответствие унитарной симметрии действительности.
  • Тау-лептон является возбужденным состоянием мюона, а его нейтрино - возбужденным состоянием мюонного нейтрино.
  • (W ± -бозоны, Z 0 -бозон) являются обыкновенными векторными мезонами и не являются переносчиками взаимодействий связанных с игнорированием закона сохранения энергии равно как и других законов природы.
  • Фотон существует в природе только в реальном состоянии. Виртуальное состояние элементарных частиц - это математические манипуляции над законами природы.
  • Ядерные силы, в основном, сводятся к взаимодействиям магнитных полей нуклонов в ближней зоне.
  • В основе причин распада нестабильных элементарных частиц лежат наличие каналов распада и законы природы. Элементарная частица также как и атом или его ядро стремится в состояние с наименьшей энергией - только возможности у нее другие.
  • В основе так называемых "нейтринных осцилляций" , а точнее реакций, лежит разность их масс покоя, ведущая к распаду более тяжелого - мюонного нейтрино. Вообще, сказочное превращение одной элементарной частицы в другую противоречит законам электромагнетизма и закону сохранения энергии. - Разные виды нейтрино обладают разными наборами квантовых чисел, в следствии чего их электромагнитные поля различаются, они обладают различной величиной полной внутренней энергии, и соответственно, разной величиной массы покоя. К сожалению, математическое манипуляции над законами природы стали нормой поведения для сказочных теорий и моделей физики 20 века.

8 Частицы в физике глазами мировой Википедии начала 2017 года

Вот так выглядят Частицы в физике с точки зрения мировой Википедии:

На эту картинку, выдаваемую за действительность, я наложил пару цветов, поскольку она нуждается в дополнениях. Зеленым цветом выделено то - что соответствует действительности. Оказалось немного, но это ВСЕ, что нашлось достоверного. Более светлым цветом выделено то, что также есть в природе, но нам пытаются вдуть в качестве другого. Ну а все бесцветные творения - это из мира СКАЗОК. А теперь сами дополнения:

  • То, что кварков в природе НЕТ - не желают знать сторонники самой Стандартной модели, подсовывая нам все новые СКАЗКИ в "обоснование" невидимости кварков в экспериментах.
  • Из основных состояний Лептонов, согласно Полевой теории элементарных частиц, в природе существуют только электрон с мюоном с соответствующими нейтрино и античастицами. Величина спина у тау-лептона, равная 1/2, еще не означает принадлежность этой частицы к основным состояниям лептонов - у них просто совпали спины. Ну а число возбужденных состояний у каждой элементарной частицы равно бесконечности - следствие Полевой теории элементарных частиц. Экспериментаторы уже начали их открывать и обнаружили множество возбужденных состояний других элементарных частиц, кроме тау-лептона, вот только они еще этого сами не поняли. Ну а то, что для некоторых, Полевая теория элементарных частиц как кость в горле - потерпят, а еще лучше если переучатся.
  • Калибровочных бозонов в природе НЕТ - в природе есть просто элементарные частицы с единичным спином: это фотон и векторные мезоны (которые любят выдавать за переносчиков сказочных взаимодействий, например, "слабое" взаимодействие) с их возбужденными состояниями, а также первое возбужденное состояние мезонов.
  • Сказочные бозоны Хиггса противоречат Теории гравитации элементарных частиц. Нам под видом бозона Хиггса пытаются вдуть векторный мезон.
  • Фундаментальные частицы в природе НЕ существуют - в природе существуют просто элементарные частицы.
  • Суперпартнеры также из мира СКАЗОК, как и другие гипотетические фундаментальные частицы. Сегодня нельзя слепо верить сказкам, независимо от фамилии автора. Выдумать можно любую частицу: "магнитный монополь" Дирака, планковскую частицу, партон, разные виды кварков, духи, "стерильные" частицы, гравитон (гравитино) ... - вот только доказательств НУЛЬ. - Не стоит обращать внимание на всякий псевдонаучный муляж, выдаваемый за достижение науки.
  • Составные частицы в природе есть, но это не барионы, гепероны и мезоны. - Это атомы, атомные ядра, ионы и молекулы барионного вещества, а также соединения электронных нейтрино, в гигантских количествах выбрасываемых звездами.
  • Согласно полевой теории элементарных частиц, в природе должны существовать группировки барионов с различными величинами полуцелого спина: 1/2, 3/2, 5/2, 7/2, ... .Пожелаю успеха экспериментаторам в обнаружении барионов с большими спинами.
  • Мезоны делятся на простые (с нулевым спином) с их возбужденными состояниями (исторически называемые резонансами), так и на векторные (с целым спином). Векторные мезоны физика уже начала открывать в природе, несмотря на отсутствие к ним заметного интереса у экспериментаторов.
  • Короткоживущие искусственно созданные экзотические атомы, в которых электрон подменили другой, более массивной элементарной частицей - это из мира "физики развлекаются". А в мегамире им нет места.
  • Экзотических адронов в природе нет, поскольку в природе НЕТ сильного взаимодействия (а есть просто ядерные силы, и это разные понятия), а следовательно, в природе нет и адронов, в том числе и экзотических.

Выдумать можно любую частицу в качестве подпорки для псевдо-теории, а потом выдавать за триумф "науки", вот только природе нет до этого никакого дела.

Сегодня хорошо видно, что доверять информации про элементарные частицы, находящейся в мировой Википедии НЕЛЬЗЯ . К действительно достоверной экспериментальной информации там добавили голословные утверждения абстрактных теоретических построений, выдающих себя за высшие достижения науки, а в действительности обыкновенных математических СКАЗОК. Мировая Википедия погорела на слепом доверии к информации издательств, зарабатывающих на науке, принимающих к публикации статьи за деньги авторов - вот и публикуются те, у кого есть деньги, вместо тех, у кого есть идеи, развивающие НАУКУ. Вот что получается, когда в мировой Википедии отодвигают в сторону ученых, а содержимое статей контролируют НЕ специалисты. Сторонники математических сказок, борьбу с их догмами презрительно называют "альтернативщиной", забывая что в начале 20 века, сама физика микромира возникла как альтернатива, господствующим тогда заблуждениям. Изучая микромир, физика нашла много нового, но вместе с подлинными экспериментальными данными в физику хлынул и поток абстрактных теоретических построений, изучающих что-то свое и выдающих себя за высшее достижение науки. Возможно в созданном данными теоретическими построениями виртуальном мире и работают выдуманные ими "законы природы", но физика изучает саму природу и ее законы, а математики могут развлекаться, сколько хотят. Сегодня физика 21 века просто пытается очиститься от заблуждений и надувательства 20 века .

9 Стандартная модель и подгонка под действительность

Сторонники теории струн, сравнивая ее со Стандартной моделью и агитируя за теорию струн, заявляют, что у Стандартной модели есть 19 свободных параметров, для подгонки под экспериментальные данные.

Они кое-что упускают. Когда Стандартная модель еще называлась кварковой моделью, ей хватало всего 3-х кварков. Но по мере развития, Стандартной модели потребовалось увеличить число кварков до 6-ти (нижний, верхний, странный, очарованный, прелестный, истинный), а каждый гипотетический кварк еще и наделить тремя цветами (r, g, b) – получаем 6*3=18 гипотетических частиц. К ним еще понадобилось добавить 8 глюонов, которых пришлось наделить уникальной способностью, под названием "конфайнмент". 18 сказочных кварков плюс 8 сказочных глюонов, для которых также не нашлось места в природе - это уже 26 вымышленных объектов, кроме 19 свободных параметров подгонки. – Модель разрасталась новыми вымышленными элементами, для подгонки под новые экспериментальные данные. Но введения цветов у сказочных кварков оказалось мало и некоторые уже заговорили о сложном строении кварков.

Трансформация модели кварков в Стандартную модель - это процесс подгонки под действительность, в целях избегания от неизбежного краха, ведущий к непомерному разрастанию Лагранжиана:



И как бы Стандартную модель не наращивали новыми "способностями" она от этого не станет научной - фундамент фальшивый .

10 Физика 21 века: Стандартная модель - итог

Стандартная модель (элементарных частиц) - это всего лишь гипотетическая конструкция, плохо соотносящаяся с действительностью, как бы ее не подгоняли:

  • Симметричность нашего мира относительно трёх типов калибровочных преобразований не доказана;
  • Кварки в природе не обнаружены ни при каких энергиях - кварков в природе НЕТ ;
  • Глюоны в природе вообще не могут существовать ;
  • Существование слабого взаимодействия в природе не доказано, и оно природе не нужно;
  • Сильное взаимодействие было выдумано взамен ядерных сил (действительно существующих в природе);
  • Виртуальные частицы противоречат закону сохранения энергии - фундаментальному закону природы;
  • Существование калибровочных бозонов в природе не доказано - в природе имеются просто бозоны.

Надеюсь, хорошо видно: на каком фундаменте построена Стандартная модель.

Не найдено, не доказано и т.п. это не значит пока не найдено и пока не доказано - это значит, нет никаких доказательств существования в природе ключевых элементов Стандартной модели. Таким образом, Стандартная модель базируется на фальшивом фундаменте, не соответствующем природе. Следовательно, Стандартная модель - является заблуждением в физике . Сторонники Стандартной модели хотят, чтобы люди продолжали верить сказкам Стандартной модели, иначе им придется переучиваться. Критику Стандартной модели они просто игнорируют, выдавая свое мнение - за решение науки. Но когда заблуждения в физике продолжают тиражироваться, несмотря на доказанную наукой их несостоятельность - заблуждения в физике превращаются в НАДУВАТЕЛЬСТВО в физике.

К заблуждениям в физике можно отнести и главного покровителя Стандартной модели - сборник математических бездоказательных предположений (попросту говоря - сборник математических СКАЗОК, или по Эйнштейну: "состряпанный из бессвязных обрывков мыслей набор бредовых идей ") под названием "Квантовая теория", не желающая считаться с фундаментальным законом природы - законом сохранения энергии. Пока квантовая теория будет продолжать выборочно учитывать законы природы и заниматься математическими манипуляциями, ее достижения трудно будет отнести к научным. Научная теория должна строго действовать в рамках законов природы, либо доказать неверность таковых. Иначе это будет за гранью науки.

В свое время Стандартная модель сыграла определенную положительную роль в накоплении экспериментальных данных о микромире - но это время завершилось. Ну а поскольку экспериментальные данные получались и продолжают получаются с помощью Стандартной модели - возникает вопрос об их достоверности. Кварковый состав открытых элементарных частиц не имеет ничего общего с действительностью. - Следовательно, экспериментальные данные, полученные с помощью Стандартной модели, нуждаются в дополнительной проверке, вне рамок модели.

В двадцатом веке на Стандартную модель возлагались большие надежды, она выдавалась за высшее достижение науки, но двадцатый век завершился, а вместе с ним и закончилось время господства в физике очередной математической сказки, построенной на фальшивом фундаменте, под названием: "Стандартная модель элементарных частиц". Сегодня ошибочность Стандартной модели НЕ замечает тот, кто НЕ желает это замечать.

Владимир Горунович

Что представляет собой структура Стандартной модели? Какими свойствами обладают частицы, входящие в Стандартную модель? Возможно ли существование четвертого поколения элементарных частиц? На эти и другие вопросы отвечает доктор физико-математических наук Дмитрий Казаков.

Последняя треть XX века ознаменовалась тем, что была создана, подтверждена экспериментально, принята и увенчана Нобелевской премией Стандартная модель фундаментальных взаимодействий. Что это такое?

Прежде всего, это модель, которая описывает фундаментальные частицы материи и все их взаимодействия. Модель эта является моделью квантовой теории поля и формулируется как лагранжева квантовая теория поля. Это теория, которая описывается как квантовая механика полей, квантами которых являются элементарные частицы, и включает в себя все фундаментальные частицы материи. Таких частиц не так уж много - это шесть кварков и шесть лептонов. Они участвуют в трех видах : сильном, слабом и электромагнитном. Гравитационное взаимодействие в данном случае мы игнорируем в силу его малости, и оно не входит в Стандартную модель. Итак, три вида взаимодействий и шесть типов частиц.

У Стандартной модели есть структура, эта структура обычно связывается с группами симметрии. Три вида взаимодействий - три группы симметрии. Все эти группы относятся к одному и тому же классу - это так называемые унитарные группы. Электромагнитные взаимодействия описываются группой симметрии SU (1), унитарные группы с одним параметром, и, соответственно, одна частица-переносчик электромагнитных взаимодействий - это фотон. У слабых взаимодействий группа симметрии SU (2), здесь уже есть три параметра, и, соответственно, есть три частицы-переносчика слабых взаимодействий - это W- и Z-бозоны. Сильные взаимодействия описываются группой SU (3), здесь уже восемь параметров и, соответственно, восемь полей-переносчиков взаимодействий - их называют глюонами. Это что касается переносчиков взаимодействий.

Сами частицы материи тоже относятся к представлениям групп симметрии. С точки зрения группы сильных взаимодействий - а в них участвуют только кварки - кварки выступают в Стандартной модели в виде триплетов, то есть они имеют квантовые числа, приобретающие три значения, часто это называют словом «цвет»: синий, красный, зеленый. В слабых взаимодействиях все частицы выступают в виде дублетов - это низшее представление группы симметрии слабых взаимодействий. У нас существуют верхние и нижние кварки, электрон и нейтрино - вот примеры двух дублетов.

Интересно, что кварки и лептоны повторяют друг друга, это называется поколениями. Есть первое поколение, второе поколение и третье поколение Стандартной модели. Вообще говоря, не очень понятно, почему природа выбрала три поколения. Есть первое поколение частиц, из которых состоит весь наблюдаемый мир, есть копия - второе поколение, и есть третья копия - это третье поколение. В Стандартную модель входят . Эти частицы являются фундаментальными в том смысле, что мы не видим никакой структуры в этих частицах.

Вообще-то говоря, абсолютного утверждения сделать нельзя, поскольку раньше протон тоже казался частицей без структуры, а потом эта структура была обнаружена. Поэтому нельзя сказать, что те частицы, которые мы сейчас считаем бесструктурными, являются такими всегда.

Возможно, в будущем что-то нам приоткроется, что сейчас не известно. Но на сегодняшний день те частицы, которые составляют Стандартную модель, являются бесструктурными точечными частицами - это кварки и лептоны, они представляются как точечные частицы Стандартной модели. Если мы хотим описать какой-то процесс, происходящий в природе, - как правило, в нем участвуют не сами кварки, а частицы, составленные из кварков, то есть адроны. Лептоны же - электрон, мюон, таон - по-прежнему наблюдаются в виде свободных или взаимодействующих частиц в природе. Поэтому процессы, которые описываются с лептонами, непосредственно описываются Стандартной моделью, с адронами - опосредованно.

Так или иначе, любые взаимодействия и любые превращения, которые мы наблюдаем в природе как на малых, так и на больших расстояниях, описываются Стандартной моделью.

В этом смысле Стандартная модель венчает собой все здание физики элементарных частиц и в некоем смысле все здание фундаментальной физики, поскольку описывает самые фундаментальные законы природы, которые известны на сегодняшний день.

Какими же свойствами обладают частицы, входящие в Стандартную модель? Прежде всего, мы привыкли описывать квантовый мир с помощью так называемых квантовых чисел. Примером квантового числа является электрический заряд. Электрический заряд - это характеристика частицы, которая нам понятна. Частицы бывают положительно заряженные, отрицательно заряженные, вовсе не заряженные, и электрический заряд - это на самом деле квантовое число, которое сохраняется в природе. Сохранение электрического заряда в Стандартной модели описывается соответствующей группой симметрии, из теории симметрии следует сохранение электрического заряда.

Но это не единственная характеристика частиц, поскольку, как известно, в Стандартной модели есть три группы симметрии. Сильные взаимодействия описывают цветные объекты. Цвет, конечно, понятие условное, просто квантовое число, которое приобретает три значения, удобно обозначать для наглядности цветом. Так вот, цветной заряд тоже обладает группой симметрии и тоже сохраняющаяся величина, цветной заряд кварков сохраняется. В слабых взаимодействиях есть свой заряд, его называют левым из-за спина - немножко сложное название, имеющее историческую причину, но это тоже характеристика слабых взаимодействий, это тоже заряд, который сохраняется. Таким образом, все частицы имеют квантовые числа, квантовые заряды, которые сохраняются, как следует из симметрии Стандартной модели.

В Стандартной модели есть свойства, которые на первый взгляд не очень понятны. Например, когда мы говорим о кварках, мы говорим, что кварки нельзя наблюдать в свободном состоянии. То есть мы настолько уверены, что кварки существуют внутри адронов, что тот факт, что мы их не можем напрямую наблюдать, нам не кажется уже странным. Но свойства, которыми обладают эти частицы, очень хорошо проявляются на эксперименте, и поэтому на эксперименте мы подтверждаем все свойства Стандартной модели.

Есть характеристики, которые неочевидны. Например, Стандартная модель описывает массы частиц и переходы одного сорта частиц в другие, при этом сохраняя нужные симметрии. Интересный пример слабого взаимодействия, в котором происходит нарушение ряда симметрий, в частности нарушение пространственной четности или нарушение зарядового сопряжения, когда частицы заменяются на античастицы.

Что еще входит в Стандартную модель? Помимо кварков и лептонов в Стандартную модель входит хиггсовский бозон. возник в теории по той причине, что понадобилось найти механизм, который дал бы массу всем частицам Стандартной модели. Это было достигнуто путем спонтанного обнаружения симметрии, путем введения в теорию дополнительного скалярного поля, то есть обладающего спином ноль, который получил название хиггсовский бозон.

Тем самым полный состав полей Стандартной модели состоит из шести кварков, шести лептонов, одного хиггсовского бозона и переносчиков всех трех видов взаимодействий. Все эти частицы экспериментально открыты. Последней открытой частицей был хиггсовский бозон - он был открыт в 2012 году. Все остальные были открыты еще в XX веке, последним было открыто нейтрино, которое называется таонное нейтрино, третье нейтрино, и оно было открыто в 2000 году. Тем самым XX век завершил Стандартную модель за исключением хиггсовского бозона, и все частицы экспериментально подтверждены.

Возникает вопрос: заканчивается ли на этом история или, может быть, есть еще какие-то частицы, которые не вошли пока в Стандартную модель, но должны будут туда войти? Или, может быть, существует что-то совсем другое, что не описывается Стандартной моделью? На все эти вопросы есть различные ответы, истину мы пока не знаем.

Прежде всего, если говорить о новых частицах типа новых кварков и новых лептонов, которые еще не открыты, как я уже сказал, в Стандартной модели есть три поколения этих частиц. Спрашивается: есть ли четвертое поколение? Экспериментально четвертого поколения не видно. Более того, есть косвенные данные, связанные как с экспериментами физики частиц, так и в космологии, что, возможно, четвертого поколения и нет. Дело в том, что в Стандартной модели есть так называемая : сколько кварков, столько и лептонов. А вот на лептоны (точнее говоря, на нейтрино) , что количество независимых полей нейтрино равно трем. Там есть небольшая лазейка для четвертого, но, по всей вероятности, она тоже скоро будет закрыта.

Если число нейтрино равно трем и есть кварк-лептонная симметрия, то и число поколений всех остальных частиц равно трем, и тем самым мы завершаем Стандартную модель.

Хиггсовский бозон только один. Может ли их быть два, или четыре, или больше? Ответ такой же: возможно. Возможно, существуют другие хиггсовские бозоны, возможно, мы открыли пока только один. Но теория разрешает присутствие большого количества хиггсовских бозонов. Есть ли они или нет - это вопрос к эксперименту. В этом смысле может так оказаться, что Стандартная модель еще не завершена, еще будут открыты новые частицы. Но, может быть, и нет - одного бозона достаточно, чтобы дать массу всем частицам.

Новые взаимодействия - мы говорили о трех видах взаимодействий, которые входят в Стандартную модель, все они реализуются как обмен переносчиками, калибровочными полями со спином единица. В некотором смысле и хиггсовский бозон может рассматриваться как переносчик четвертого взаимодействия, когда он выступает как переносчик взаимодействия со спином ноль. Но есть ли еще? Нет ли каких-то новых взаимодействий или каких-то новых групп симметрии, более широких, чем Стандартная модель? Не входит ли Стандартная модель как составная часть в какую-то более общую теорию? Этот вопрос тоже открыт. Не исключено, что это так, не исключено, что она входит в более общую теорию, но этого пока не видно.

Надо сказать, что, когда мы говорим о том, что Стандартная модель триумфально завершилась, мы говорим о том, что все без исключения эксперименты, которые ставятся на ускорителях, в подземной физике, в космосе, - все они блестяще, совершенно с завидной точностью, с точностью иногда до десяти десятитысячных знаков, описываются Стандартной моделью. В этом смысле это совершенно уникальная модель, которая позволяет описать огромную часть неживой природы с помощью очень простых универсальных математических формул.

Сегодня Стандартная модель является одной из важнейших теоретических конструкций в физике элементарных частиц, описывающих электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Главные положения и составные части этой теории описывает физик, член-корреспондент РАН Михаил Данилов

1

Сейчас на основе экспериментальных данных создана очень совершенная теория, которая описывает практически все явления, которые мы наблюдаем. Эта теория скромно называется «Стандартная модель элементарных частиц». В ней имеется три поколения фермионов: кварков, лептонов. Это, так сказать, строительный материал. Из первого поколения построено все, что мы видим вокруг нас. В него входят u- и d-кварки, электрон и электронное нейтрино. Протоны и нейтроны состоят из трех кварков: uud и udd, соответственно. Но есть еще два поколения кварков и лептонов, которые в какой-то степени повторяют первое, но тяжелее и в конце концов распадаются на частицы первого поколения. У всех частиц имеются античастицы, обладающие противоположными зарядами.

2

Стандартная модель включает три взаимодействия. Электромагнитное взаимодействие удерживает электроны внутри атома и атомы внутри молекул. Переносчиком электромагнитного взаимодействия является фотон. Сильное взаимодействие удерживает протоны и нейтроны внутри атомного ядра, а кварки внутри протонов, нейтронов и других адронов (так Л. Б. Окунь предложил называть частицы, участвующие в сильном взаимодействии). В сильном взаимодействии принимают участие кварки и построенные из них адроны, а также и переносчики самого взаимодействия - глюоны (от английского glue - клей). Адроны состоят либо из трех кварков, как протон и нейтрон, либо из кварка и антикварка, как, скажем, π±мезон, состоящий из u- и анти-d- кварков. Слабое взаимодействие приводит к редким распадам, таким как распад нейтрона на протон, электрон и электронное антинейтрино. Переносчиками слабого взаимодействия являются W- и Z-бозоны. В слабом взаимодействии принимают участие и кварки, и лептоны, но оно при наших энергиях весьма мало. Это однако объясняется просто большой массой W- и Z-бозонов, которые на два порядка тяжелее протонов. При энергиях больше массы W- и Z-бозонов силы электромагнитного и слабого взаимодействия становятся сравнимыми, и они объединяются в единое электрослабое взаимодействие. Предполагается, что при намного бо льших энергиях и сильное взаимодействие объединится с остальными. Кроме электрослабого и сильного взаимодействий имеется еще гравитационное взаимодействие, которое не входит в Стандартную модель.

W, Z-бозоны

g - глюоны

H0 - бозон Хиггса.

3

Стандартная модель может быть сформулирована только для безмассовых фундаментальных частиц, т. е. кварков, лептонов, W- и Z-бозонов. Для того, чтобы они приобрели массу, обычно вводится поле Хиггса, названное по имени одного из ученых, предложивших этот механизм. В этом случае в Стандартной модели должна быть еще одна фундаментальная частица - бозон Хиггса. Поиски этого последнего кирпичика в стройном здании Стандарной модели активно ведутся на самом крупном коллайдере в мире - Большом адроном коллайдере (БАК). Уже получены указания на существование бозона Хиггса с массой около 133 масс протона. Однако статистическая надежность этих указаний еще недостаточна. Ожидается, что до конца 2012 г. ситуация прояснится.

4

Стандартная модель прекрасно описывает практически все эксперименты по физике элементарных частиц, хотя поиски явлений, выходящих за рамки СМ, настойчиво ведутся. Последним намеком на физику за рамками СМ явилось обнаружение в 2011 г. в эксперименте LHCb на БАК неожиданно большого различия в свойствах так называемых очарованных мезонов и их античастиц. Однако, по-видимому, даже такое большое различие может быть объяснено в рамках СМ. С другой стороны, в 2011 г. было получено еще одно, искавшееся несколько десятилетий, подтверждение СМ, предсказывающей существование экзотических адронов. Физики из Института теоретической и экспериментальной физики (Москва) и Института ядерной физики (Новосибирск) в рамках международного эксперимента BELLE обнаружили адроны, состоящие из двух кварков и двух антикварков. Скорее всего, это молекулы из мезонов, предсказанные теоретиками ИТЭФ М. Б. Волошиным и Л. Б. Окунем.

5

Несмотря на все успехи Стандартной модели, у нее имеется много недостатков. Количество свободных параметров теории превышает 20, и совершенно неясно, откуда возникает их иерархия. Почему масса t-кварка в 100 тысяч раз больше массы u-кварка? Почему константа связи t- и d-кварков, впервые измеренная в международном эксперименте ARGUS при активном участии физиков ИТЭФ, в 40 раз меньше константы связи с- и d-кварков? На эти вопросы СМ не дает ответа. Наконец, зачем нужны 3 поколения кварков и лептонов? Японские теоретики М. Кобаяши и Т. Маскава в 1973 г. показали, что существование 3-х поколений кварков позволяет объяснить различие свойств материи и антиматерии. Гипотеза М.Кобаяши и Т. Маскавы была подверждена в экспериментах BELLE и BaBar при активном участии физиков из ИЯФ и ИТЭФ. В 2008 г. М. Кобаяши и Т. Маскава были удостоены за свою теорию Нобелевской премии

6

В Стандартной модели имеются и более фундаментальные проблемы. Мы уже сейчас знаем, что СМ не является полной. Из астрофизических исследований известно, что существует материя, которой нет в СМ. Это так называемая темная материя. Ее примерно в 5 раз больше, чем обычной материи, из которой мы состоим. Пожалуй, основным недостатком Стандартной Модели является отсутствие в ней внутренней самосогласованности. Так, например, естественная масса бозона Хиггса, возникающая в СМ из-за обмена виртуальными частицами, на много порядков превышает массу, необходимую для объяснения наблюдаемых явлений. Одним из выходов, самым популярным в настоящий момент, является гипотеза о суперсимметрии - предположение о том, что имеется симметрия между фермионами и бозонами. Впервые эту идею высказали в 1971 г. Ю. А. Гольфанд и Е. П. Лихтман в ФИАНе, и теперь она пользуется громадной популярностью.

7

Существование суперсимметричных частиц не только позволяет стабилизировать поведение СМ, но и дает очень естественного кандидата на роль темной материи - самую легкую суперсимметричную частицу. Хотя в настоящий момент нет никаких надежных экспериментальных подтверждений этой теории, она настолько красива и так элегантно позволяет решить проблемы Стандартной модели, что очень многие в нее верят. На БАК активно ведутся поиски суперсимметричных частиц и других альтернатив СМ. Например, ищут дополнительные измерения пространства. Если они существуют, то многие проблемы могут быть решены. Возможно, гравитация становится сильной на относительно больших расстояниях, что тоже будет большим сюрпризом. Возможны другие, альтернативные модели Хиггса, механизмы возникновения массы у фундаментальных частиц. Поиск эффектов за рамками Стандартной модели ведется очень активно, но пока безуспешно. Очень многое должно проясниться в ближайшие годы.