Что делают хромосомы в клетке. От греч.Гомос - одинаковый. Внешнее строение хромосом

1.13. Строение и функции хромосом

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10- 4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматид а построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют ка-риотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчер-ченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины ге-терогаметны (ХУ), а женщины гомогаметны (XX). У-хромосо-ма отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

Простым делением на две или сразу на много клеток (бактерии, простейшие);

Вегетативно (растения, кишечнополостные);

Делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);

Почкованием (бактерии, кишечнополостные);

Образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта


Рис. 15. Строение яйцеклетки птицы: 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

яйцевой оболочкой, состоящей в основном из гликопротеи-дов.

У мхов и папоротников яйцеклетки развиваются в архе-гониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

Изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);

Алецитальные - почти лишены желтка (млекопитающие);

Телолецитальные - содержат много желтка (рыбы, птицы);

Полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.

Сперматогенез - процесс превращения сперматогониев в сперматозоиды включает следующие этапы:

Сперматогонии делятся на две дочерние клетки - спер-матоциты первого порядка;

Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки - сперматоциты второго порядка;

Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются четыре гаплоидные сперматиды;

Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.

Хромосомы - это нуклеопротеидные структуры, располагающиеся в ядрах эукариотических клеток. В них хранится практически вся и именно они несут функцию ее хранения, передачи и реализации. Хромосомы практически не видны даже в световой микроскоп, однако их можно четко рассмотреть в периоды деления клетки, во время митоза и мейоза.

Кариотип и правила хромосом

Кариотипом называется совокупность всех находящихся в клетке. Он видоспецифичен, то есть является уникальным для каждого вида живых существ на планете, уровень изменчивости его относительно низок, однако у некоторых особей может обладать определенными особенностями. Например, представители разного пола имеют в основном одинаковые хромосомы (аутосомы), различие кариотипов составляет только одна пара хромосом - половые хромосомы, или гетерохромосомы.

Правила хромосом просты: число их постоянно (в соматических клетках может содержаться только строгое число хромосом, например, у кошек - 38, у плодовой мушки дрозофилы - 8, у курицы - 78, а у человека 46).

Хромосомы парны, каждая из них имеет гомологичную пару, идентичную по всем параметрам, включая форму и размер. Разнится только происхождение: одна - от отца, другая - от матери.

Гомологичные пары хромосом индивидуальны: каждая из пар отличается от других не только внешним видом - формой и размером, - но и расположением светлых и темных полос.

Непрерывность - еще одно правило хромосом. ДНК клетки удваивается перед делением, результатом чего становится пара сестринских хроматид. Каждая дочерняя клетка после деления получает по одной хроматиде, то есть от хромосомы образуется хромосома.


Необходимые элементы

Хромосома, строение которой относительно несложно, образуется из обладающей большой длиной. Она содержит линейные группы множества генов. Каждая хромосома обладает центромерой и теломерами, точками инициации репликации - это ее необходимые функциональные элементы. Теломеры находятся на кончиках хромосом. За счет них и точек начала репликации (их так же называют сайтами инициации), молекула ДНК может реплицироваться. В центромерах же происходит прикрепление сестринских молекул ДНК к митотическому веретену деления, что позволяет им точно разойтись по дочерним клеткам во время процесса митоза.

О вирусах

Термин "хромосома" изначально был предложен в качестве обозначения структур, свойственных эукариотическим клеткам, однако ученые все чаще упоминают вирусные и бактериальные хромосомы. Состав, функции их практически схожи, поэтому Д. Е. Коряков и И. Ф. Жимулёв считают, что понятие уже давно нужно расширить, и определять хромосому, как структуру, содержащую нуклеиновую кислоту и имеющую функцию хранения, реализации и передачи информации о генах. У эукариот хромосомы содержатся в ядре, а так же пластидах и митохондриях. Прокариоты (безъядерные) также содержат ДНК, однако в клетке нет ядра. У вирусов хромосомы имеют вид молекулы РНК или ДНК, расположенной в капсиде. Независимо от наличия в клетке ядра, в состав хромосом входят органические вещества, ионы металлов и множество других веществ.


История открытия

Ученые прошли большой путь, прежде чем исследовали хромосомы. Впервые они были описаны в семидесятых годах позапрошлого века: разные авторы упоминали о них в своих статьях, книгах и научных работах, поэтому открытие хромосом приписывают разным людям. В этом списке имена И. Д. Чистякова, А. Шнейдера, О. Бючли, Э. Страсбургера и многие другие, однако большинством ученых 1882 год признается как год открытия хромосом, а первооткрывателем называют В. Флеминга, немецкого анатома, собравшего и упорядочившего сведения о хромосомах в своей книге Zellsubstanz, Kern und Zelltheilung, добавив к уже имевшимся сведениям собственные исследования. Сам же термин предложил в 1888 году гистолог Г. Вальдейер. В переводе хромосома значит буквально "окрашенное тело". Название связано с тем, что химический состав хромосомы позволяет ей легко связывать основные красители.

В 1900 году были "переоткрыты" законы Менделя, и очень скоро, в течение двух лет, ученые пришли к выводу, что хромосомы во время процессов мейоза и оплодотворения ведут себя как "частицы наследственности", поведение которых было теоретически описано ранее. В 1902 году, независимо друг от друга, Т. Бовери и У. Сеттоном была выдвинута гипотеза о том, что хромосома, строение которой еще было неизвестно, несет функцию передачи и хранения наследственной информации.

Дрозофилы и генетика

Первая четверть прошлого века ознаменовалась экспериментальным подтверждением идей о том, что хромосомы имеют генетическую роль. Американские ученые Т. Морган, А. Стёртевант, К. Бриджес и Г. Мёллер работали над исследованиями, объектами которых стали строение и классификация хромосом, а также их функции. Опыты проводились на D.melanogaster, известной, пожалуй, всем плодовой мушке. Полученные данные послужили фундаментом для хромосомной теории наследственности, которая актуальна и сейчас, спустя почти сто лет. Согласно ей, хромосомы связаны с наследственной информацией, а гены в них локализованы линейно, в четкой последовательности, но химический состав и морфология хромосом исследуются учеными и в наши дни.

За проведенную работу Т. Моргану была присуждена Нобелевская премия в области физиологии и медицины в 1933 году.

Химический состав хромосом

Кратко можно описать, что наследственный материал в хромосомах предстает как нуклео-протеиновый комплекс. После изучения химической организации хромосом в эукариотических клетках, ученые могут сказать, что состоят они в большей части из ДНК и белков, которыми образуется нуклео-протеиновый комплекс, называемый хроматином.

Белки, входящие состав хромосом, это значительная часть всего вещества в хромосомах, около 65% всей массы структур приходится именно на них. Хромосомные белки подразделяются на негистоновые белки и гистоны. Гистоны - сильноосновны, щелочной характер их обуславливается наличием лизина и аргенина - основных аминокислот.

Химический и структурный состав хромосом разнообразен. Гистоны представляют пять фракций: Hl, H2A, H2B, H3 и H4. Все, кроме первой фракции, примерно в равных количествах имеются в клетках всех видов, принадлежащих к высшим млекопитающим. Белков Hl меньше вдвое.

Синтез гистонов происходит на полисомах цитоплазмы. Это основные белки, имеющие положительный заряд, за счет чего могут прочно соединяться с молекулами ДНК и таким образом не дают считывать заключенную наследственную информацию. В этом заключается регуляторная роль гистонов, но помимо нее есть и структурная функция, за счет которой обеспечивается пространственная организация ДНК в хромосомах.

В характерный химический состав интерфазных хромосом входят и негистоновые белки, которые, в свою очередь, подразделяются более чем на сто фракций. В этот ряд входят ферменты, отвечающие за синтез РНК, и ферменты, которые запускают репарацию и Так же как и основные, кислые хромосомные белки имеют регуляторную и структурную функции.

Однако химический состав хромосомы на этом не заканчивается: кроме белков и ДНК, в составе присутствует РНК, ионы металлов, липиды и полисахариды. Отчасти хромосомная РНК присутствует в качестве продуктов транскрипции, которые еще не покинули место синтеза.


В метафазе

Морфологические особенности метафазной хромосомы заключаются в следующем: в течение первой половины митоза они состоят из пары сестринских хроматид, которые соединены между собой в области центромеры (первичная перетяжка, или кинетохора) - это участок хромосомы, общий для обеих хроматид. Химический состав хромосомы также меняется. Вторая половина митоза характеризуется разделением хроматид, после чего происходит образование однонитчатых дочерних хромосом, которые распределяются в дочерние клетки. Вопрос о том, сколько ДНК входит в состав метафазной хромосомы, часто встречается в тестах по биологии и ставит в тупик учащихся. В последний период интерфазы, а также в профазе и метафазе, хромосомы двухроматидны, поэтому их набор соответствует формуле 2n4c.

Классификация хромосом

По положению центромер и длине плеч, располагающихся по обе стороны от нее, хромосомы классифицируются на метацентрические (равноплечие), если центромера располагается посредине, и субметацентрические (неравноплечие), если центромера сдвинута к одному из концов. Также существуют акроцентрические, или палочковидные хромосомы (центромера у них расположена практически на самом конце) и точковые хромосомы, получившие свое название за небольшой размер, вследствие чего практически невозможно определить их форму. У телоцентрических хромосом тоже трудно определить место расположения первичной перетяжки.

Компактизация

Любая соматическая клетка содержит в себе 23 пары хромосом, каждая из которых состоит из одной молекулы ДНК. Общая длина всех 46 молекул составляет около двух метров! Это более трех миллиардов пар нуклеотидов, и все они умещаются в одной клетке, при этом хромосомы в период интерфазы практически неразличимы даже в электронный микроскоп. Причина этого - надмолекулярная организация хромосом, или компактизация. При переходе в другую фазу клеточного цикла хроматин может изменять свою организацию.

Структура и химический состав интерфазных хромосом и строение метафазных хромосом расцениваются учеными как полярные варианты структуры, которые связываются между собой взаимными переходами во время процесса митоза.


Первый уровень компактизации представлен нуклеосомной нитью, который также называют "бусы на нитке". Характерный размер - 10-11 нм, что не позволяет рассмотреть их в микроскоп.

Химический состав хромосомы обуславливает наличие этого уровня организации: его обеспечивают четыре вида гистонов - основных белков (Н2А, Н2В, НЗ, Н4). Они образовывают коры - тела из белковых молекул, имеющие форму шайбы. Каждая кора состоит из восьми молекул (пара молекул от каждого из гистонов).
Происходит комплектация молекулы ДНК, она спирально накручивается на коры. С каждым белковым телом контактирует отрезок молекулы ДНК, насчитывающий 146 нуклеотидных пар. Есть и не участвующие в контакте области, называющиеся линкерными, или связующими. Размер их разнится, но в среднем равен 60 парам нуклеотидов (п. н.).

Нуклеосомой называют участок ДНК, имеющий длину 196 п.н. и включающий в себя белковую кору. Однако нуклеосомная нить, похожая на нить бус, имеет и области, не содержащие коры.

Подобные участки, которые отлично различают негистоновые белки, ввиду наличия определенных нуклеотидных последовательностей, встречаются довольно равномерно с интервалом в несколько тысяч нуклеотидных пар. Их наличие важно для дальнейшей компактизации хроматина.

Дальнейшая упаковка хроматина

Хроматиновая фибрилла - второй уровень компактизации - называется также соленоидным, или нуклеомерным уровнем. Размер составляет 30 нм. Обеспечивается гистоном HI. Он объединяется с линкерным участком ДНК, а так же с двумя соседними корами и "стягивает" их между собой. Результатом процесса становится образование гораздо более компактной структуры, напоминающей по строению соленоид. Подобная фибрилла, помимо хроматиновой, носит название элементарной.

Далее следует хрономерный уровень. Характерный размер этого уровня компактизации - 300 нм. Уже не происходит дополнительная спирализация, однако образуются поперечные петли, которые совпадают с размером одного репликона и объединяются посредством негистоновых (кислых)

На хромонемном уровне (700 нм) петли сближаются, и хроматин еще больше компактизируется. Образованные нити хромосом уже видны в световой микроскоп.

Хромосомный уровень (1400 нм) наблюдается в период метафазы.


Мутации и их роль в медицине

Мутация хромосом - не редкость, однако может иметь разную степень и механизмы возникновения. Изменения в структурной форме хромосом обычно основываются на первоначальном нарушении целостности. Если в хромосоме присутствуют разрывы, то организму приходится производить их перестройку, в результате чего и возникает хромосомная мутация, или абберация.

В процессе кроссинговера обмениваются соответствующими участками, и именно в это время обычно происходят разрывы. Если во время кроссинговера произошел обмен неравноценными участками генов, появляются новые группы сцепления.

Виды мутаций

Существует несколько видов мутаций, основанных на механизме их происхождения. Мутация деления появляется вследствие выпадения участков генов. Если какие-то участки генома были удвоены - это дупликация. Во время инверсии участок хромосомы между разрывами поворачивается на 180°.

Транслокацией называется переход участка из одной хромосомы в другую, причем если перемещение происходит между негомологичными хромосомами, транслокация называется реципрокной, а если фрагмент был присоединен к той же хромосоме, мутация именуется транспозицией. Во время происходит объединение в одну двух негомологичных структур.

Также существуют мутации перицентрические и парацентрические.

РНК

В зависимости от фазы, в которой находится клетка, меняется химический состав, особенности морфологии хромосом и их размер, но генетический материал несет в себе не только ДНК и хромосомы в ядре.

Рибонуклеиновая кислота (РНК) - еще одна структура, участвующая в передаче и хранении генетической информации.

Существует мРНК, или иРНК (матричная, или информационная), она участвует в синтезе белков с заданными свойствами. Для этого необходимо, чтобы на место "постройки" поступила "инструкция", которая сообщит, в каком порядке аминокислоты должны быть включены в цепь пептидов. Этой инструкцией и является информация, закодированная в последовательности нуклеотидов мРНК (иРНК). Транскрипцией и называется процесс синтеза матричной РНК.

Процесс считывания информации с ДНК можно сравнить с компьютерной программой. Сначала РНК-полимераза должна обнаружить промотор - особый участок молекулы ДНК, который отмечает область начала транскрипции. РНК-полимераза соединяется с промотором и начинает раскручивание прилежащего витка ДНК-спирали. В этом месте две цепи ДНК отсоединяются друг от друга, после чего фермент начинает образование мРНК на одной из них (кодогенной, обращенной к ферменту 3`-концом). Рибонуклеотиды собираются в цепь по правилу комплементарности с нуклеотидами ДНК, и антипараллельно относительно матричной ДНК-цепи.


Процесс транскрипции

Таким образом, по мере продвижения вдоль ДНК-цепи, фермент точно считывает всю информацию, продолжая процесс, пока вновь не встретит особую последовательность нуклеотидов. Она называется терминатором транскрипкции, и сигнализирует, что РНК-полимераза должна отделиться и от матричной цепи ДНК, и от только что синтезированной мРНК. Сумма областей от промотора до терминатора, включая транскрибируемый участок, называется единицей транскрипции - транскриптоном.

По мере того, как РНК-полимераза продвигается вдоль кодогенной цепи, транскрибированные одноцепочечные участки ДНК снова объединяются и принимают вид двойной спирали. Образованная мРНК несет в себе точную копию данных, переписанных с участка ДНК. Нуклеотиды мРНК, кодирующие последовательности аминокислот, группируются по три и носят название кодонов. Каждому кодону мРНК соответствует определенной аминокислоте.

Свойства и функции генов

Ген считается элементарной неделимой функциональной единицей наследственного матриала. Она имеет вид участка молекулы ДНК, которой кодируется структура как минимум одного пептида.

Ген имеет определенные свойства, первое из них - дискретность действия. Это означает, что различно локализованные гены контролируют развитие признаков особи.
Свойство постоянства определяется тем, что ген неизменен при наследственной передаче, если, конечно, не произошло мутации. Из этого следует, что ген не может быть изменен в течение жизни.

Специфичность действия заключается в обусловленности развития признака или группы признаков, однако гены могут оказывать и множественные действия - это называется плейотропией.

Свойство дозированности действия определяет предел, до которого может развиться признак, обусловленный геном.

Для них также характерно и аллельное состояние, то есть практически все гены находятся в аллелях, количество которых начинается с двух.

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

В 1888 г. в ядрах клеток эукариот были открыты нитевидные структуры, названные Вильгельмом Вальдейером хромосомами (от греч. chroma - цвет, окраска, soma - тело). Далее было подтверждено, что именно хромосомы - материальные носители наследственной информации.
Рис. 7.1. В.Вальдейер (1836-1921)
Внешний вид хромосом существенно меняется в течение клеточного цикла. В период между делениями клетки (в интерфазе) хромосомы - длинные, очень тонкие нити, увидеть которые можно только в электронный микроскоп (Рис.7.2). Они располагаются равномерно по всему объему ядра.

Рис. 7.2. Хромосомы в интерфазе

Хорошо различимыми в световом микроскопе хромосомы становятся при делении клетки, когда скручиваются в спираль, при этом укорачиваясь и утолщаясь (Рис.7.3.).

Наследственная информация в хромосомах записана в виде последовательности нуклеотидов молекул нуклеиновых кислот. В клетках эукариот (и ряда прокариот) функции хранения, передачи и реализации наследственной информации выполняет ДНК. В клетках не бывает «чистой» ДНК. На всех этапах клеточного цикла молекулы ДНК взаимосвязаны с белками.Хроматин (греч. chroma - цвет, краска и греч. nitos - нить) - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот. В интерфазных клетках хроматин может равномерно заполнять объем ядра. Для четкой передачи информации между дочерними клетками хромосомные нити претерпевают ряд этапов более плотной упаковки и формируются в хроматиды. Хромосомы клеток эукариот в метафазе клеточного деления (митоза) состоят из двух хроматид, соединенных в области первичной перетяжки - центромеры (Рис.7.3.).

Рис. 7.3. Строение хромосомы в метафазе митоза

Каждый вид организмов имеет строго определенный набор хромосом.

Например, в ядре соматической клетки человека - 46хромосом , 2 из которых (Х, Y) определяют пол (Рис. 7.4.).

Рис. 7.4. Хромосомы человека

Набор хромосом в клетках тела организма того или иного вида характеризуется их числом, размерами, формой, особенностями строения и называется кариотип (от карио… и греч. týpos - образец, форма, тип). Кариотип служит «паспортом» вида, надёжно отличающим его от кариотипов других видов.

Хромосомный набор,полученный от родителей – генотип , а гаметы – геном.

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки - гаплоидный (одинарный - n). Например, диплоидный набор хромосом аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Функции хромосом:

1) хранение наследственной информации,

2) передача генетического материала от материнской клетки к дочерним.

Структура ДНК

Первооткрыватель ДНК - Иоганн Фридрих Мишер . В 1869 г. он выделил из ядер лейкоцитов, вещество, названное им нуклеином. Термин "нуклеиновая кислота" был введен в 1899 году.

Рис. 7.5. И. Ф. Мишер (1844–1895)

Размеры ДНК зависят от типа организма. Физическая длина ДНК вирусов составляет десятки микрометров, бактерий – миллиметры, а человека – 2 метра. Структуру ДНК в 1953г. установили Джеймс Уотсон и Френсис Крик .

Рис. 7.6. Дж. Уотсони Ф. Крик

Согласно модели Уотсона-Крика , ДНК представляет двойную спираль. Две цепочки, прочно связаны друг с другом. Каждая цепочка – полимер, мономерами которого являются нуклеотиды 4-х типов, отличающиеся азотистым основанием (Рис. 7.7.).

Рис. 7.7. Схема строения нуклеотидов ДНК

(А- аденин, Г- гуанин, Т- тимин, Ц- цитозин)

Цепи ДНК ориентированы строго определённым образом: азотистые основания нуклеотидов обеих цепей обращены внутрь, а сахара и фосфаты – наружу; между азотистыми основаниями пары А и Т образуются 2 водородные связи, а между Г и Ц - 3, поэтому прочность связи Г-Ц выше, чем А-Т (Рис. 7.8.).

Рис. 7.8. Строение ДНК

Азотистые основания 2-х цепочек ДНК расположены по принципу комплементарности (лат. complementum - дополнение), т.е. взаимодополняют друг друга (подходят друг к другу как «ключ к замку»):

А-Т (Аденин соединяется с Тимином)

Г-Ц (Гуанин соединяется с Цитозином) (Рис. 7.9.).

Рис. 7.9. Принципкомплементарности в молекуле ДНК

Зная последовательность нуклеотидов в одной цепи ДНК, можно выяснить порядок следования нуклеотидов на другой цепи этой же ДНК.

Еще до открытия Уотсона и Крика, в 1950 г. австралийский биохимик биохимик Эдвин Чаргафф сформулировал правило, согласно которому:

  1. количество аденина равно количеству тимина, а гуанина - цитозину: А=Т, Г=Ц
  2. количество (А + Г) равно количеству (Т+Ц): А+Г=Т+Ц .

Рис. 7.10. Э. Чаргафф (1905-2002)

Клетки организма данного вида содержат ДНК с одинаковым составом нуклеотидов, который не зависит ни от питания, ни от окружающей среды, ни от возраста организма. Нуклеотидный состав ДНК разных видов различен.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков организма, в ДНК заключена информация о структуре, деятельности клеток, всех признаках каждой клетки и организма в целом.

То, что ДНК и РНК содержатся как в клетках животных, так и в клетках растений, выяснилось только к концу 30-х годов XX в.Ранее полагали, что ДНК содержится только в клетках животных, а РНК - в клетках растений. То, что РНК содержится во всех клетках, причем не столько в ядре, сколько в цитоплазме, стало известно только в 40-е годы XX в.

  1. Репликация ДНК

Репликация – это процесс синтеза дочерней молекулы ДНК на матрице родительской молекулы ДНК, то есть копирование родительской ДНК с образованием дочерних ДНК. Во время репликации происходит удвоение молекул ДНК по принципу комплементарности (Рис. 7.9.). С помощью специальных ферментов водородные связи, скрепляющие нити ДНК, разрываются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей последовательно пристраиваются комплементарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными - они задают порядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов происходит соединение нуклеотидов друг с другом. При этом образуются новые нити ДНК, комплементарные каждой из разошедшихся цепей (Рис. 7.11.).

Рис. 7.11. Схема удвоения ДНК

Таким образом, в результате репликации создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, синтезированную вновь.

Дочерние молекулы ДНК ничем не отличаются друг от друга и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же информацию, которая содержалась в материнской клетке. Так ДНК передает, хранящуюся в ней информацию о структуре белковых молекул.

Ген. Генетический код

Наследственная информация, заключенная в ДНК – генетическая.

Ген – участок молекулы ДНК, содержащий информацию о первичной структуре одного белка, т.е. элементарная единица генетической и наследственной информации. Вирусные ДНК содержат немного генов, бактериальные – тысячи генов. В геноме человека около 50 тыс. генов. Часть генов «работает» только при определённых условиях. Так, ген, регулирующий синтез инсулина, способен выполнять свои функции только в специальных клетках поджелудочной железы, а гемоглобин вырабатывается только в том случае, если гены, отвечающие за его синтез, находятся в клетках молодых эритроцитов.

Генетический код (От греч.Genos - происхождение + фран.Code - условное сокращение) - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Суть кода заключается в том, что последовательность расположения нуклеотидов в матричной РНК (мРНК) определяет последовательность расположения аминокислот в белке. Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает мРНК - копия одной из нитей ДНК, то генетический код записан на «языке» РНК.

Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав:
- А аденин;
- Г гуанин;
- Ц цитозин;
- Т тимин (в ДНК) или У урацил (в мРНК). Эти буквы составляют алфавит генетического кода. В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Являющиеся носителями генов и определяющие наследственные свойства клеток и организмов .

В большинстве случаев хромосомы хорошо видны лишь в делящихся клетках. На стадии метафазы их можно видеть даже в световом микроско-пе. В этот период удается определить число хромосом, их размеры, форму и строение.

Число хромосом обычно постоянно для всех клеток особи любого вида животных и растений; то же и у человека. Но у разных видов количество хромосом не одинаково. Их может быть в ядре от двух до нескольких сотен.

Каждая хромосома образована одной молекулой ДНК и сопутствующи-ми ей белками. В структурной организации ДНК центральную роль играют специфические белки — гистоновые и негистоновые. Считается, что вся ядерная ДНК ассоциирована с этими белками и образует нуклеопротеиновый комплекс, называемый хроматином (греч. chromatos — «цвет», «окраска»).

Негистоновые белки очень разнообразны. Среди них находятся много-численные ферменты, обеспечивающие процессы репликации ДНК, транскрипции, а также некоторые белки ядерного матрикса. Полагают, что негистоно-вые белки хроматина выполняют и некото-рые регуляторные функции.

Гистоны — это белки, богатые остат-ками аминокислот аргинина и лизина, кото-рые определяют щелочные свойства этих белков. Гистоны являются структурными белками, выполняющими важную роль — упаковку ДНК. Например, в растянутом со-стоянии длина двойной спирали ДНК, со-державшейся в хромосоме человека, соста-вила бы в среднем около 4-5 см, а с помо-щью гистонов такая молекула упакована в хромосоме, измеряемой долями микромет-ра. По сравнению с остальными белками ко-личество гистонов в клетке очень велико — оно почти равно массе ДНК, содержащейся в ядре, что свидетельствует об их большом и активном участии в структурировании хроматина от молекулярного состояния ДНК до её формы в виде хромосомы.

Молекула ДНК в хромосоме упакована очень компактно. Различают не-сколько уровней компактизации хроматина в ядре клеток эукариот: от двой-ной нитевидной спиралевидной молекулы ДНК до её суперупакованного со-стояния в хромосоме (рис. 46).

Форма хромосом в клетках разных видов различна. Но все они построе-ны по одному плану. На стадии метафазы митоза хромосомы хорошо различи-мы в микроскопе. Они имеют вид двух палочковидных телец — хроматид, скреплённых перетяжкой — центромерой. Центромера — это небольшой уча-сток хромосомы, к которому прикрепляются нити веретена при митозе (и мейозе) и который контролирует движение разделяющихся хромосом при делении клетки . Центромера делит хромосому на два равных по длине плеча. Концевые участки хромосом называют теломерами. Они предохраняют кон-цы хромосом от слипания.

Хромосомы, лишённые центромеры, не способны совершать упорядоченное дви-жение при делении клетки. Обычно центромера у хромосомы занимает опреде-лённое место, и это является одним из признаков, по которому хромосомы разли-чают. Изменение положения центромеры в той или иной хромосоме служит пока-зателем хромосомных перестроек. Материал с сайта

Как особенность хромосом следует отметить их способность к удвое-нию (самовоспроизведению). В основе удвоения хромосом лежит процесс репликации молекул ДНК, обеспечивающий точное копирование и передачу генетической информации от поколения к поколению . Удвоение хромосом — это сложный процесс, включающий в себя не только репликацию гигантских молекул ДНК, но также синтез связанных с ДНК хромосомных белков. Конеч-ным этапом хромосомного удвоения является упаковка ДНК и их белков в хромосому.

Белки, окружающие отдельные участки ДНК, принимают участие и в ре-гуляции синтеза РНК. Участки ДНК, прикрытые белками, не способны синте-зировать РНК, т. е. они «нечитаемы», а освобожденные от белков — способны (с них списывается информация, т. е. они «читаемы»). Но в целом хромосомы в живой клетке обеспечивают синтез РНК, необходимый для последующего синтеза белков клетки.

На этой странице материал по темам:

  • Уровни структурной организации хромосом кратко

  • Какая структура хромосомы определяет её форму?

  • Структурные функции хромосом доклад

  • Охарактеризовать виды хромосом

  • Реферат о структуре хромосом

Вопросы по этому материалу: