Поляризация света: основные понятия. Применение поляризации света Что доказывает явление поляризации света

Направлению распространения волны;

  • Круговую поляризацию - правую либо левую, в зависимости от направления вращения вектора индукции;
  • Эллиптическую поляризацию - случай, промежуточный между круговой и линейными поляризациями.
  • Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.

    При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально . Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.

    Линейная Круговая Эллиптическая


    Теория явления

    Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

    Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

    Линейную поляризацию имеет обычно излучение антенн .

    По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

    Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

    Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.

    История открытия

    Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Э. Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог. Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Х. Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, т. е. их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы). В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей. Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света. В 1808 г. французский физик Э. Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.

    Параметры Стокса

    Изображение поляризации языком параметров Стокса на сфере Пуанкаре

    В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например,полудлинами сторон прямоугольника, в который вписан эллипс поляризации A 1 , A 2 и разностью фаз φ , либо полуосями эллипса a , b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса :

    , ,

    Независимыми являются только три из них, ибо справедливо тождество:

    Если ввести вспомогательный угол χ , определяемый выражением (знак соответствует правой, а - левой поляризации), то можно получить следующие выражения для параметров Стокса:

    На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре , поэтому эта сфера называется сферой Пуанкаре.

    Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

    См. также

    Литература

    • Ахманов С.А., Никитин С.Ю. - Физическая оптика, 2 издание, M. - 2004.
    • Борн М., Вольф Э. - Основы оптики, 2 издание, исправленное, пер. с англ.,М. - 1973

    Примечания


    Wikimedia Foundation . 2010 .

    • Поляризация волны
    • Поляризация фотонов

    Смотреть что такое "Поляризация света" в других словарях:

      ПОЛЯРИЗАЦИЯ СВЕТА - физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены … Физическая энциклопедия

      ПОЛЯРИЗАЦИЯ СВЕТА Современная энциклопедия

      Поляризация света - ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… … Иллюстрированный энциклопедический словарь

      поляризация света - поляризация Свойство света, характеризующееся пространственно временной упорядоченностью ориентации магнитного и электрического векторов. Примечания 1. В зависимости от видов упорядоченности различают: линейную поляризацию, эллиптическую… …

      ПОЛЯРИЗАЦИЯ СВЕТА - (лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

      ПОЛЯРИЗАЦИЯ СВЕТА - упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью… … Большой Энциклопедический словарь

      поляризация [света] - Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа [Арефьев В.А., Лисовенко Л.А.… … Справочник технического переводчика

      поляризация света - упорядоченность в ориентации векторов напряжённостей электрических E и магнитных Н полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда Е сохраняет постоянное направление (плоскостью… … Энциклопедический словарь

      поляризация [света] - polarization поляризация [света]. Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа … Молекулярная биология и генетика. Толковый словарь.

      поляризация света - šviesos poliarizacija statusas T sritis fizika atitikmenys: angl. polarization of light vok. Lichtpolarisation, f rus. поляризация света, f pranc. polarisation de la lumière, f … Fizikos terminų žodynas


    Марио Льоцци

    Ранее говорилось об открытом Гюйгенсом явлении, объяснения которого, как он искренне сам заявил, он дать не смог. Луч света, прошедший сквозь кристалл исландского шпата, приобретает какое-то особое свойство, благодаря которому он, попадая на второй кристалл исландского шпата с главным сечением, параллельным первому, уже испытывает не двойное лучепреломление, а обычное. Если же этот второй кристалл шпата повернуть, то вновь возникнет двойное лучепреломление, но интенсивность обоих преломленных лучей будет зависеть от угла поворота.

    В первые годы XIX столетия исследованием этого явления занялся французский военный инженер Этьенн Малюс (1775-1812), который в 1808 г. обнаружил, что свет, отраженный от воды под углом 52°45", обладает тем же свойством, что и свет, прошедший через кристалл исландского шпата, причем отражающая поверхность как бы является главным сечением кристалла.

    Это явление наблюдалось и при отражении от любого другого вещества, но требуемый угол падения менялся в зависимости от показателя преломления вещества. В случае отражения от металлической поверхности картина получалась более сложной.

    В следующей работе, написанной в том же году, Малюс, экспериментируя с полярископом, описываемым до сих пор в учебниках физики под названием "полярископа Био" и состоящим из двух зеркал, расположенных под углом, приходит к формулировке известного закона, носящего его имя.

    Как раз в то время, когда Малюс проводил свои исследования, Парижская Академия наук объявила конкурс (1808 г.) на лучшую математическую теорию двойного лучепреломления, подтверждаемую опытом. Малюс принял участие в этом конкурсе и получил премию за свой имеющий историческое значение труд "Theorie de la double refraction de la lumiere dans les substances cristalisees" ("Теория двойного лучепреломления света в кристаллических веществах"), опубликованный в 1810 г. В нем Малюс описывает свое открытие и найденный им закон; для его объяснения он принимает точку зрения Ньютона "не в качестве неоспоримой истины", а лишь как гипотезу, позволяющую рассчитать явление. Объявив себя, таким образом, сторонником корпускулярной теории света, Малюс пытается найти объяснение в полярности световых корпускул, о которой бегло упоминает Ньютон в 26 вопросе. В естественном свете, как он теперь называется, корпускулы света ориентированы по всем направлениям, при прохождении же двоякопреломляющего кристалла или при отражении они ориентируются определенным образом. Свет, в котором корпускулы имеют определенную ориентацию, Малюс назвал поляризованным; это слово и его производные остались в физике и до наших дней.

    Исследования поляризации света, начатые Малюсом, продолжили во Франции Био и Араго, а в Англии Брюстер, который в свое время был больше известен благодаря изобретенному им калейдоскопу (1817 г.), нежели важным открытиям в области кристаллооптики. В 1811 г. Малюс, Био и Брюстер независимо открыли, что отраженный луч также частично поляризован.

    В 1815 г. Дэвид Брюстер (1781-1868) дополнил эти исследования открытием закона, носящего его имя: отраженный луч полностью поляризован (а соответствующий преломленный луч имеет максимальную поляризацию), когда отраженный и преломленный лучи перпендикулярны друг другу.

    Доминик Франсуа Араго (1786-1853) установил поляризацию света лунного серпа, комет, радуги, еще раз подтвердив тем самым, что все это отраженный солнечный свет. Поляризованным является также свет, испускаемый под косыми углами раскаленными жидкими и твердыми телами, что доказывает, что этот свет исходит из внутренних слоев вещества и преломляется, выходя наружу. Но наиболее важным и наиболее известным открытием Араго является обнаруженная им в 1811 г. хроматическая поляризация. Помещая на пути поляризованного луча пластинку из горного хрусталя толщиной 6 мм и наблюдая прошедший сквозь нее луч через кристалл шпата, Араго получил два изображения, окрашенных в дополнительные цвета. Окраска обоих изображений при повороте пластинки не менялась, но менялась при повороте кристалла шпата, причем оба цвета все время оставались дополнительными. Так, если одно из изображений было сначала красным при определенном положении кристалла шпата, то при его повороте оно становилось последовательно оранжевым, желтым, зеленым и т. д. Био повторил этот опыт в 1812 г. и показал, что угол поворота кристалла шпата, необходимый для получения определенного цвета изображения, пропорционален толщине пластинки. Кроме того, в 1815 г. Био обнаружил явление круговой поляризации и наличие правовращающих и левовращающих веществ.

    В том же году Био установил, что турмалин обладает двойным лучепреломлением и свойством поглощать обыкновенный луч и пропускать лишь необыкновенный. На этом явлении были основаны сконструированные Гершелем в 1820 г. известные "турмалиновые щипцы"- простейший поляризационный прибор, оставшийся неизменным до наших дней. Наибольшим неудобством этого прибора было окрашивание луча. Этого недостатка лишена призма, предложенная в 1820 г. английским физиком Уильямом Николем (1768-1851). Призма Николя также пропускает только необыкновенный луч. Комбинация двух таких "николей", как теперь называются эти двоякопреломляющие призмы, в один прибор, имеющий и сейчас широчайшее применение, была осуществлена самим Николем в 1839 г.

    Таким образом,основные явления поляризации света, представляющие собой обширный и интересный раздел физики, включаемый теперь во все учебники, были открыты французскими физиками за семь лет, с 1808 по 1815 г. И поскольку открытие столь интересных явлений происходило под флагом корпускулярной теории, казалось, что она получает в этих явлениях еще одно подтверждение.

    Теперь пришло время поговорить о том, в чем заключается сущность поляризации света .

    В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.

    Что такое поляризация света

    Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

    Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?

    Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?

    Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н . Кстати, интересные факты о природе света можно узнать из нашей статьи.

    Согласно теории Максвелла , световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.

    Поляризация наблюдается только на поперечных волнах.

    Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E .

    Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.

    Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.

    Если же вектор E колеблется в разных плоскостях с одинаковой вероятностью, то такой свет называется естественным.

    Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Откуда берется поляризованный свет?

    Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.

    Чтобы наблюдать явление поляризации света, нужно пропустить естественный свет через анизотропную среду, которая называется поляризатором и «отсекает» ненужные направления колебаний, оставляя какое-то одно.

    Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.

    В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света - турмалин .

    Еще один способ получения поляризованного света - отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный. При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.

    Связь между углом падения и степенью поляризации света выражается законом Брюстера .

    Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.

    Линейно поляризованный свет - свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.

    Практическое применение явления поляризации света

    Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.

    Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.

    Поляризация - не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.

    Чтобы не терять время и преодолеть трудности максимально быстро, обратитесь за советом и помощью к нашим авторам . Мы поможем выполнить реферат, лабораторную работу, решить контрольные задания на тему "поляризация света".

    Представляя собой одну из разновидностей электромагнитного излучения, свет может характеризоваться источником и определенной направленностью. Помимо этого, не стоит забывать о его двойственности. Так, в первом случае он будет считаться волной, а во втором – частицей (фотоном).

    Определение 1

    Поляризация света является одним из свойств какого-либо излучения в рамках оптического диапазона. В условиях такого явления, как поляризация, колебания частиц светового луча, которые направлены на поперечную поверхность, будут осуществляться в одинаковой плоскости. При этом отсекаются иные составляющие.

    Понятие поляризации света

    Понять суть поляризации света будет легче на конкретных примерах. Так, можно представить очень длинную, расположенную между двумя горизонтальными точками веревку, проходящую в пластине-щите сквозь щель.

    Если взять теперь веревку за один конец и сформировать волны, они легко достигнут ее другого конца (но только в том случае, если образуются в одной плоскости со щелью в щите), то есть вертикальным способом. Попытка двигать веревку вертикальным способом закончится гашением волн при достижении щита (из-за невозможности протиснуться поперек щели). Таким образом, в данном примере веревка выступает в роли электромагнитного излучения, щит становится прозрачной (полупрозрачной) средой, а щель – специфичным свойством среды.

    Поскольку свет представляет собой электромагнитную волну, она будет зависимой от двух типов векторов напряженности: электрического и магнитного. Они, в свою очередь, обладают свойством постоянной перпендикулярности по отношению друг к другу и могут формировать условную плоскость перпендикулярно линии распространения самой волны.

    Круговая поляризация света возникает в случае вращения векторов магнитной индукции и электрического поля относительно направления луча света. В случае колебаний вектора напряженности такого поля в одинаковой плоскости, формируется плоско поляризованная электромагнитная волна (линейно-поляризованная).

    Интересно, что излучение атомами одного-единственного светового кванта света будет всегда поляризовано. Наряду с тем, световой поток свечи, лампочки, Солнца, фонаря и пр. окажется неполяризованным, что объясняется излучением от множества атомов, имеющих различную поляризацию. Это лишает суммарный поток ориентированности.

    Замечание 1

    Поляризация света существенно зависит от особенностей вещества или местоположения атомов в его кристаллической решетке. Первые опыты проводились учеными с задействованием кристаллов, и только впоследствии объектом их внимания стали газообразные среды (атмосфера).

    Поляризация света также зависит от местоположения наблюдателя (фотоэлемента, датчика и пр.). Это, в свою очередь, объясняет возрастание поляризации при увеличении угла между направлением света от источника и указывающим на направленность луча зрения вектором. В случае факта параллельности направлений мы наблюдаем уже отсутствие поляризации (при идеальных условиях). Также в природе зафиксирован третий вариант (имеется в виду частичная поляризация светового потока).

    Подобная конфигурация возникает в случае преобладающего эффекта колебаний электрического поля (магнитной индукции) их векторов. Интересным фактом является то, что человеческий глаз легко различает длину волн (цветовой аспект света) и ее интенсивность, а вот сама регистрация поляризации при этом доступна косвенно. Наряду с тем, большинство насекомых, имеющих фасеточные глаза, способны прекрасно различать поляризацию волны, что, в свою очередь, помогает им отлично ориентироваться в пространстве.

    Явление поляризации света в природе

    Поляризованный свет является световыми волнами, чьи электромагнитные колебания способны распространяться исключительно в одном направлении. В природе различают только три вида поляризации:

    • линейную (плоскостную);
    • круговую;
    • эллиптическую.

    При линейно поляризованном свете электрические колебания будут производиться исключительно в одном направлении. Он появляется при отражении, от листа стекла, например, или от поверхности воды. Также известны примеры с прохождением света через определенные виды кристаллов (турмалин, кварц).

    Замечание 2

    Поляризация света, таким образом, превращается в процесс упорядочивания колебаний вектора напряжённости электрополя световой волны в условиях прохождения светового потока сквозь некоторые вещества (преломление или отражение светового луча). Плоскость поляризации , в таком случае, будет представлять собой плоскость, которая проходит сквозь направление колебаний вектора света плоскополяризованной волны и ее распространения.

    Излучаемый атомом квант света будет поляризован всегда. При этом, излучение макроскопического источника света, такого как Солнце, электрическая лампа или свеча, окажется суммой излучений огромного количества атомов, каждый из которых будет излучать квант приблизительно за 10-8 секунды. В таком случае, при излучении всеми атомами света с не одинаковой поляризацией, поляризация всего пучка будет подвергаться изменениям на протяжении аналогичных временных промежутков.

    Определение 2

    По этой причине, в рамках естественного света, абсолютно все связанные с поляризацией эффекты усредняются, поэтому он называется неполяризованным.

    С целью выделения из неполяризованного света части, имеющей желаемую поляризацию, применяются поляризаторы, например, такие, как, турмалин, исландский шпат или поляризаторы искусственного типа.

    Также в физике существует такое понятие, как поляризационный свет. Он получается следующими способами:

    • за счет отражения от диэлектриков, степень поляризации при этом будет зависеть от показателя преломления и угла падения лучей;
    • посредством пропускания света через анизотропную среду.

    Все прозрачные кристаллы (исключая оптически изотропные кристаллы кубической системы) обладают свойством двойного лучепреломления, иными словами, - могут раздваиваться в отношении каждого светового пучка, падающего на них. Так, при направлении на толстый кристалл исландского шпата узкого пучка света, из кристалла выйдут два параллельных и пространственно разделенных луча.

    Применение поляризационного света

    Лучше понять суть и принцип действия поляризации света в природе помогут конкретные примеры применения поляризационного света:

    1. В молекулярной физике (при исследовании поверхности и структуры вещества, а также, при изучении явления поляризации молекул веществ). Вращение плоскости поляризации представляет основу методов сахариметрии (для определения степени концентрации растворов).
    2. В геологии (при исследовании в поляризованном свете различных минералов и изделий, геологи способны различать: изделия и минералы, природное и искусственное происхождения, поддельные и настоящие изделия).
    3. В фотографии (выполняя репродукции картин в застекленных рамах, фотографы могут легко ликвидировать блики от стекла за счет надетого на объектив поляризованного фильтра).
    4. В оптике (поляризованный бинокль помогает капитанам корабля вести судно в соответствии с правильным курсом, уничтожая при этом мешающие световые блики на морских волнах, зафиксированные при наблюдении). Поляризационные микроскопы, при изучении тончайших срезов минералов (шлифов) позволяют ученым определить структуру вещества. В стереокино применяются поляризационные очки, создающие иллюзию объемности.
    5. В технике (здесь наблюдается широкое применение поляризации света в случае необходимости плавного регулирования интенсивности светового пучка). Поляризация также применяется при создании жидкокристаллических дисплеев, задействованных во многих устройствах (например, в мониторах компьютеров, часах, таймерах).
    6. В астрономии (процесс спектрального разложения света может стать достоверным индикатором наличия жидкой воды, без которой невозможно формирование жизни земного типа). Вычисление угла поляризации позволяет максимально точно определить состав преломляющей свет жидкости.

    Таким образом, можно говорить о разнообразии применения поляризации света в природе и о важности изучения основных понятий данного явления.

    В. МУРАХВЕРИ

    Явление поляризации света, изучаемое и в школьном и в институтском курсах физики, остается в памяти многих из нас как любопытный, находящий применение в технике, но не встречающийся в повседневной жизни оптический феномен. Голландский физик Г. Кеннен в своей статье, опубликованной в журнале «Натуур эн техниек», показывает, что это далеко не так – поляризованный свет буквально окружает нас.

    Человеческий глаз весьма чувствителен к окраске (то есть длине волны) и яркости света, но третья характеристика света, поляризация, ему практически недоступна. Мы страдаем «поляризационной слепотой». В этом отношении некоторые представители животного мира гораздо совершеннее нас. Например, пчелы различают поляризацию света почти так же хорошо, как цвет или яркость. И так как поляризованный свет часто встречается в природе, им дано увидеть в окружающем мире нечто такое, что человеческому глазу совершенно недоступно. Человеку можно объяснить, что такое поляризация, с помощью специальных светофильтров он может увидеть, как меняется свет, если «вычесть» из него поляризацию, но представить себе картину мира «глазами пчелы» мы, видимо, не можем (тем более что зрение насекомых отличается от человеческого и во многих других отношениях).

    Рис. 1. Схема строения зрительных рецепторов человека (слева) и членистоногого (справа). У человека молекулы родопсина расположены беспорядочно с складках внутриклеточной мембраны, у членистоногих – на выростах клетки, аккуратными рядами

    Поляризация – это ориентированность колебаний световой волны в пространстве. Эти колебания перпендикулярны направлению движения луча света. Элементарная световая частица (квант света) представляет собой волну, которую можно сравнить для наглядности с волной, которая побежит по канату, если, закрепив один его конец, другой встряхнуть рукой. Направление колебаний каната может быть различным, смотря по тому, в каком направлении встряхивать канат. Точно так же и направление колебаний волны кванта может быть разным. Пучок света состоит из множества квантов. Если их колебания различны, такой свет не поляризован, если же все кванты имеют абсолютно одинаковую ориентацию, свет называют полностью поляризованным. Степень поляризации может быть различной в зависимости от того, какая доля квантов в нем обладает одинаковой ориентацией колебаний.

    Существуют светофильтры, пропускающие только ту часть света, волны которой ориентированы определенным образом. Если через такой фильтр смотреть на поляризованный свет и при этом поворачивать фильтр, яркость пропускаемого света будет меняться. Она будет максимальна при совпадении направления пропускания фильтра с поляризацией света и минимальна при полном, (на 90°) расхождении этих направлений. С помощью фильтра можно обнаружить поляризацию, превышающую примерно 10%, а специальная аппаратура обнаруживает поляризацию порядка 0,1%.

    Поляризационные фильтры, или поляроиды, продаются в магазинах фотопринадлежностей. Если через такой фильтр смотреть на чистое голубое небо (при облачности эффект выражен гораздо слабее) примерно в 90 градусах от направления на Солнце, то есть чтобы Солнце было сбоку, и при этом фильтр поворачивать, то ясно видно, что при некотором положении фильтра на небе появляется темная полоса. Это свидетельствует о поляризованности света, исходящего от этого участка неба. Поляроидный фильтр открывает нам явление, которое пчелы видят «простым глазом». Но не надо думать, что пчелы видят ту же темную полосу на небе. Наше положение можно сравнить с положением полного дальтоника, человека, неспособного видеть цвета. Тот, кто различает только черное, белое и различные оттенки серого цвета, мог бы, смотря на окружающий мир попеременно через светофильтры различного цвета, заметить, что картина мира несколько меняется. Например, через красный фильтр иначе выглядел бы красный мак на фоне зеленой травы, через желтый фильтр стали бы сильнее выделяться белые облака на голубом небе. Но фильтры не помогли бы дальтонику понять, как выглядит мир человека с цветным зрением. Так же, как цветные фильтры дальтонику, поляризационный фильтр может лишь подсказать нам, что у света есть какое-то свойство, не воспринимаемое глазом.

    Поляризованность света, идущего от голубого неба, некоторые могут заметить и простым глазом. По данным известного советского физика академика С.И. Вавилова, этой способностью обладают 25...30% людей, хотя многие из них об этом не подозревают. При наблюдении поверхности, испускающей поляризованный свет (например, того же голубого неба), такие люди могут заметить в середине поля зрения слабо-желтую полоску с закругленными концами.

    Рис. 2.

    Еще слабее заметны голубоватые пятнышки в ее центре, по краям. Если плоскость поляризации света поворачивается, то поворачивается и желтая полоска. Она всегда перпендикулярна к направлению световых колебаний. Это так называемая фигура Гайдингера, она открыта немецким физиком Гайдингером в 1845 году. Способность видеть эту фигуру можно развивать, если хотя бы раз удастся ее заметить. Интересно, что еще в 1855 году, не будучи знакомым со статьей Гайдингера, напечатанной за девять лет до того в одном немецком физическом журнале, Лев Толстой писал («Юность», глава XXXII): «...я невольно оставляю книгу и вглядываюсь в растворенную дверь балкона, в кудрявые висячие ветви высоких берез, на которых уже заходит вечерняя тень, и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает...» Такова была наблюдательность великого писателя.

    Рис. 3.

    В неполяризованном свете (1 ) колебания электрической и магнитной составляющей идут в самых разных плоскостях, которые можно свести к двум, выделенным на этом рисунке. Но колебаний по пути распространения луча нет (свет в отличие от звука – не продольные колебания). В поляризованном свете (2 ) выделена одна плоскость колебаний. В свете, поляризованном по кругу (циркулярно), эта плоскость закручивается в пространстве винтом (3 ). Упрощенная схема объясняет, почему поляризуется отраженный свет (4 ). Как уже сказано, все существующие в луче плоскости колебаний можно свести к двум, они показаны стрелками. Одна из стрелок смотрит на нас и условно видна нам как точка. После отражения света одно из существующих в нем направлений колебаний совпадает с новым направлением распространения луча, а электромагнитные колебания не могут быть направлены вдоль пути своего распространения.

    Фигуру Гайдингера можно увидеть гораздо яснее, если смотреть через зеленый или синий светофильтр.

    Поляризованность света, исходящего от чистого неба, – лишь один из примеров явлений поляризации в природе. Другой распространенный случай – это поляризованность отраженного света, бликов, например, лежащих на поверхности воды или стеклянных витрин. Собственно, фотографические поляроидные фильтры и предназначены для того, чтобы фотограф мог в случае необходимости устранять эти мешающие блики (например, при съемке дна неглубокого водоема или фотографировании картин и музейных экспонатов, защищенных стеклом). Действие поляроидов в этих случаях основано на том, что отраженный свет в той или иной степени поляризован (степень поляризации зависит от угла падения света и при определенном угле, разном для разных веществ, – так называемом угле Брюстера – отраженный свет поляризован полностью). Если теперь смотреть на блик через поляроидный фильтр, нетрудно подобрать такой поворот фильтра, при котором блик полностью или в значительной мере подавляется.

    Применение поляроидных фильтров в противосолнечных очках или ветровом стекле позволяет убрать мешающие, слепящие блики от поверхности моря или влажного шоссе.

    Почему поляризован отраженный свет и рассеянный свет неба? Полный и математически строгий ответ на этот вопрос выходит за рамки небольшой научно-популярной публикации (читатели могут найти его в литературе, список которой приведен в конце статьи). Поляризация в этих случаях связана с тем, что колебания даже в неполяризованном луче уже в определенном смысле «поляризованы»: свет в отличие от звука не продольные, а поперечные колебания. В луче нет колебаний по пути его распространения (см. схему). Колебания и магнитной и электрической составляющей электромагнитных волн в неполяризованном луче направлены во все стороны от его оси, но не по этой оси. Все направления этих колебаний можно свести к двум, взаимно перпендикулярным. Когда луч отражается от плоскости, он меняет направление и одно из двух направлений колебаний становится «запретным», так как совпадает с новым направлением распространения луча. Луч становится поляризованным. В прозрачном веществе часть света уходит вглубь, преломляясь, и преломленный свет тоже, хотя и в меньшей степени, чем отраженный, поляризован.

    Рассеянный свет неба не что иное, как солнечный свет, претерпевший многократное отражение от молекул воздуха, преломившийся в капельках воды или ледяных кристаллах. Поэтому в определенном направлении от Солнца он поляризован. Поляризация происходит не только при направленном отражении (например, от водной глади), но и при диффузном. Так, с помощью поляроидного фильтра нетрудно убедиться, что поляризован свет, отраженный от покрытия шоссе. При этом действует удивительная зависимость: чем темнее поверхность, тем сильнее поляризован отраженный от нее свет. Эта зависимость получила название закона Умова, по имени русского физика, открывшего ее в 1905 году. Асфальтовое шоссе в соответствии с законом Умова поляризовано сильнее, чем бетонное, влажное – сильнее, чем сухое. Влажная поверхность не только сильнее блестит, но она еще и темнее сухой.

    Заметим, что свет, отраженный от поверхности металлов (в том числе от зеркал – ведь каждое зеркало покрыто тонким слоем металла), не поляризован. Это связано с высокой проводимостью металлов, с тем, что в них очень много свободных электронов. Отражение электромагнитных волн от таких поверхностей происходит иначе, чем от поверхностей диэлектрических, непроводящих.

    Поляризация света неба была открыта в 1871 году (по другим источникам даже в 1809 году), но подробное теоретическое объяснение этого явления было дано лишь в середине нашего века. Тем не менее, как обнаружили историки, изучавшие древние скандинавские саги о плаваниях викингов, отважные мореходы почти тысячу лет назад пользовались поляризацией неба для навигации. Обычно они плавали, ориентируясь по Солнцу, но, когда светило было скрыто за сплошной облачностью, что не редкость в северных широтах, викинги смотрели на небо через специальный «солнечный камень», который позволял увидеть на небе темную полоску в 90° от направления на Солнце, если облака не слишком плотны. По этой полосе можно судить, где находится Солнце. «Солнечный камень» – видимо, один из прозрачных минералов, обладающих поляризационными свойствами (скорее всего распространенный на севере Европы исландский шпат), а появление на небе более темной полосы объясняется тем, что, хотя за облаками Солнца и не видно, свет неба, проникающий через облака, остается в какой-то степени поляризованным. Несколько лет назад, проверяя это предположение историков, летчик провел небольшой самолет из Норвегии в Гренландию, в качестве навигационного прибора пользуясь только кристаллом минерала кордиерита, поляризующего свет.

    Уже говорилось, что многие насекомые в отличие от человека видят поляризацию света. Пчелы и муравьи не хуже викингов пользуются этой своей способностью для ориентировки в тех случаях, когда Солнце закрыто облаками. Что придает глазу насекомых такую способность? Дело в том, что в глазе млекопитающих (и в том числе человека) молекулы светочувствительного пигмента родопсина расположены беспорядочно, а в глазе насекомого те же молекулы уложены аккуратными рядами, ориентированы в одном направлении, что и позволяет им сильнее реагировать на тот свет, колебания которого соответствуют плоскости размещения молекул. Фигуру Гайдингера можно видеть потому, что часть нашей сетчатки покрыта тонкими, идущими параллельно волокнами, которые частично поляризуют свет.

    Любопытные поляризационные эффекты наблюдаются и при редких небесных оптических явлениях, таких, как радуга и гало. То, что свет радуги сильно поляризован, обнаружили в 1811 году. Вращая поляроидный фильтр, можно сделать радугу почти невидимой. Поляризован и свет гало – светящихся кругов или дуг, появляющихся иногда вокруг Солнца и Луны. В образовании и радуги и гало наряду с преломлением участвует отражение света, а оба эти процесса, как мы уже знаем, приводят к поляризации. Поляризованы и некоторые виды полярного сияния.

    Наконец, следует отметить, что поляризован и свет некоторых астрономических объектов. Наиболее известный пример – Крабовидная туманность в созвездии Тельца. Свет, испускаемый ею, – это так называемое синхротронное излучение, возникающее, когда быстро летящие электроны тормозятся магнитным полем. Синхротронное излучение всегда поляризовано.

    Вернувшись на Землю, отметим, что некоторые виды жуков, обладающие металлическим блеском, превращают свет, отраженный от их спинки, в поляризованный по кругу. Так называют поляризованный свет, плоскость поляризации которого закручена в пространстве винтообразно, налево или направо. Металлический отблеск спинки такого жука при рассмотрении через специальный фильтр, выявляющий круговую поляризацию, оказывается левозакрученным. Все эти жуки относятся к семейству скарабеев, В чем биологический смысл описанного явления, пока неизвестно.

    Литература:

    1. Брэгг У. Мир света. Мир звука. М.: Наука, 1967.
    2. Вавилов С.И. Глаз и Солнце. М.: Наука, 1981.
    3. Венер Р. Навигация по поляризованному свету у насекомых. Журн. «Сайентифик америкен», июль 1976 г.
    4. Жевандров И.Д. Анизотропия и оптика. М.: Наука, 1974.
    5. Кеннен Г.П. Невидимый свет. Поляризация в природе. Журн. «Натуур эн техниек». №5. 1983.
    6. Миннарт М. Свет и цвет в природе. М.: Физматгиз, 1958.
    7. Фриш К. Из жизни пчел. М.: Мир, 1980.

    Наука и жизнь. 1984. №4.