Особенности рельефа местности влияющие на живые организмы. Абиотические факторы

Рельеф в жизни растений выступает как косвенно действующий фактор. Под влиянием рельефа по-разному складывается комплекс климатических и почвенных факторов. В зависимости от величины форм различают макрорельеф (горы, низменности), мезорельеф (холмы, овраги, гряды) и микрорельеф (мелкие неровности, западины, кочки).

Макрорельеф

При подъёме в горы изменяются климатические, почвенные и другие экологические факторы. Поэтому в горах наблюдается поясное распределение растительности. Особенно своеобразные условия складываются возле границы вечных снегов, они отражаются на строении, физиологии и сезонном развитии растений. Для высокогорных растений характерен приземистый рост, мелкие листья, крупные и ярко окрашенные цветки. У многих растений выражены признаки ксерофитизма. Наряду с высотой над уровнем моря сильно сказывается на распределении растений крутизна и экспозиция склонов. На южном склоне произрастают наиболее теплолюбивые и светолюбивые растения. Материал с сайта

Мезорельеф

Менее крупные формы рельефа (холмы, балки, овраги) также влияют на распределение растительности. Так, в лесной зоне примеси дуба и ясеня в лесах приурочены к повышенным местам, а на равнинах поселяются более северные виды. Основное значение элементов мезорельефа состоит в перераспределении зональных экологических факторов.

Микрорельеф

Микрорельеф также способствует появлению различий в среде обитания растений, в связи с этим наблюдается чередование на небольшом пространстве видов разными экологическими особенностями.

Влияние среды на организм.

Любой организм является открытой системой, а значит получает извне вещество, энергию, информацию и, таким образом, полностью зависит от среды. Это отражено в законе, открытым российским ученым К.Ф. Рулье: «результаты развития (изменений) любого объекта (организма) определяются соотношением его внутренних особенностей и особенностей той среды, в которой он находится» . Иногда этот закон называют первым экологическим законом, поскольку он универсален.

Организмы влияют на среду, изменяя газовый состав атмосферы (Н: в результате фотосинтеза), участвуют в формировании почвы, рельефа, климата и др.

Предел воздействия организмов на среду обитания описывает другой экологический закон (Куражковский Ю.Н.): каждый вид организмов, потребляя из окружающей среды необходимые ему вещества и выделяя в нее продукты своей жизнедеятельности, изменяет ее таким образом, что среда обитания становится непригодной для его существования.

1.2.2. Экологические факторы среды и их классификация.

Множество отдельных элементов среды обитания, влияющих на организмы хотя бы на одной из стадий индивидуального развития, называются экологическими факторами.

По природе происхождения выделяют абиотические, биотические и антропогенные факторы. (Слайд 1)

Абиотические факторы - это свойства неживой природы (температура, свет, влажность, состав воздуха, воды, почвы, естественный радиационный фон Земли, рельеф местности) и др., которые прямо или косвенно влияют на живые организмы.

Биотические факторы - это все формы воздействия живых организмов друг на друга. Действие биотических факторов может быть как прямым, так и косвенным, выражаясь в изменении условий окружающей среды, например, изменение состава почвы под влиянием бактерий или изменение микроклимата в лесу.

Взаимные связи между отдельными видами организмов лежат в основе существования популяций, биоценозов и биосферы в целом.

Раньше к биотическим факторам относили и воздействие человека на живые организмы, однако в настоящее время выделяют особую категорию факторов, порождаемых человеком.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания и других видов и непосредственно сказываются на их жизни.

Деятельность человека на планете следует выделять в особую силу, оказывающую на природу как прямое, так и косвенное воздействие. К прямому воздействию относят потребление, размножение и расселение человеком как отдельных видов животных и растений, так и создание целых биоценозов. Косвенное воздействие осуществляется путем изменения среды обитания организмов: климата, режима рек, состояния земель и др. По мере роста народонаселения и технической вооруженности человечества удельный вес антропогенных экологических факторов неуклонно возрастает.



Экологические факторы изменчивы во времени и пространстве. Некоторые факторы среды считаются относительно постоянными на протяжении длительных периодов времени в эволюции видов. Например, сила тяготения, солнечная радиация, солевой состав океана. Большинство экологических факторов - температура воздуха, влажность, скорость движения воздуха - очень изменчивы в пространстве и во времени.

В соответствии с этим, в зависимости от регулярности воздействия, экологические факторы делят на (Слайд 2):

· регулярно-периодические , меняющие силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане. Например: понижение температуры в умеренном климатическом поясе северной широты с наступлением зимы года и т.д.

· нерегулярно-периодические , явления катастрофического характера: бури, ливни, наводнения и т.д.

· непериодические, возникающие спонтанно, без четкой закономерности, разово. Например, возникновение нового вулкана, пожары, деятельность человека.

Таким образом, каждый живой организм испытывает влияние неживой природы, организмов других видов, в том числе и человека, и, в свою очередь, оказывает воздействие на каждую из этих составляющих.

По очередности факторы делятся на первичные и вторичные .

Первичные экологические факторы существовали на планете всегда, еще до появления живых существ, и все живое к этим факторам приспособилось (температура, давление, приливы, сезонная и суточная периодичность).

Вторичные экологические факторы возникают и изменяются благодаря изменчивости первичных экологических факторов (мутность воды, влажность воздуха и др.).

По действию на организм все факторы подразделяются на факторы прямого действия и косвенные .

По степени воздействия их подразделяют на летальный (приводящий к гибели), экстремальный, лимитирующий, беспокоящий, мутагенный, тератогенный, приводящий к уродствам в ходе индивидуального развития).

Каждый экологический фактор характеризуется определенными количественными показателями: силой, давлением, частотой, интенсивностью и др.

1.2.3. Закономерности действия экологических факторов на организмы. Лимитирующий фактор. Закон минимума Либиха. Закон толерантности Шелфорда. Учение об экологических оптимумах видов. Взаимодействие экологических факторов.

Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы. Любой экологический фактор может воздействовать на организм следующим образом (Слайд):

· изменять географическое распространение видов;

· изменять плодовитость и смертность видов;

· вызывать миграцию;

· способствовать появлению у видов приспособительных качеств и адаптаций.

Наиболее эффективно действие фактора при некотором значении фактора, оптимальном для организма, а не при его критических значениях. Рассмотрим закономерности действия фактора на организмы. (Слайд).

Зависимость результата действия экологического фактора от его интенсивности благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения (пессимума) . Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно. Диапазон действия фактора между критическими точками называется зоной толерантности (выносливости) организма по отношению к данному фактору. Точка на оси абсцисс, которая соответствует наилучшему показателю жизнедеятельности организма, означает оптимальную величину фактора и называется точкой оптимума. Так как трудно определить точку оптимума, то обычно говорят о зоне оптимума или зоне комфорта. Таким образом, точки минимума, максимума и оптимума составляют три кардинальные точки , которые определяют возможные реакции организма на данный фактор. Условия среды, в которых какой-либо фактор (или совокупность факторов) выходит за пределы зоны комфорта и оказывает угнетающее действие, в экологии называют экстремальными .

Рассмотренные закономерности носят название «правило оптимума» .

Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором . Т.о. лимитирующий фактор – экологический фактор, значение которого выходит за границы выживаемости вида.

Например, заморы рыб зимой в водоемах вызваны нехваткой кислорода, карпы не живут в океана (соленая вода), миграцию почвенных червей вызывает избыток влаги и недостаток кислорода.

Первоначально было установлено, что развитие живых организмов ограничивает недостаток какого-либо компонента, например, минеральных солей, влаги, света и т.п. В середине XIX века немецкий химик-органик Юстас Либих первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве. Он назвал это явление законом минимума; в честь автора его еще называют законом Либиха . (Бочка Либиха).

В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Однако, как выяснилось позже, лимитирующим может быть не только недостаток, но и избыток фактора, например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т.п. Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет после Либиха американский зоолог В. Шелфорд, сформулировавший закон толерантности . Согласно закону толерантности лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору

Принцип лимитирующих факторов справедлив для всех типов живых организмов - растений, животных, микроорганизмов и относится как к абиотическим, так и к биотическим факторам.

Например, лимитирующим фактором для развития организмов данного вида может стать конкуренция со стороны другого вида. В земледелии лимитирующим фактором часто становятся вредители, сорняки, а для некоторых растений лимитирующим фактором развития становится недостаток (или отсутствие) представителей другого вида. Например, в Калифорнию из средиземноморья завезли новый вид инжира, но он не плодоносил, пока оттуда же не завезли единственный для него вид пчел-опылителей.

В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом.

Так, избыток воды даже в засушливых районах вреден и вода может рассматриваться как обычный загрязнитель, хотя в оптимальных количествах она просто необходима. В частности, избыток воды препятствует нормальному почвообразованию в черноземной зоне.

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки "эври", узкою «стено». Виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными , а виды, приспосабливающиеся к экологической обстановке с широким диапазоном изменения параметров, - эврибионтными .

Например, животные, способные выносить значительные колебания температуры, называются эвритермными , узкий диапазон температур характерен длястенотермных организмов. (Слайд). Небольшие изменения температуры мало сказываются на эвритермных организмах и могут оказаться гибельными для стенотермных (рис. 4). Эвригидроидные и стеногидроидные организмы различаются реакцией на колебания влажности. Эвригалинные и стеногалинные – обладают разной реакцией на степень засоленности среды. Эвриойкные организмы способны жить в разных местах, а стеноойкные – проявляют жесткие требования к выбору местообитания.

По отношению к давлению все организмы подразделяются на эврибатные и стенобатные или стопобатные (глубоководные рыбы).

По отношению к кислороду выделяют эвриоксибионты (карась, карп) и стенооксибионт ы (хариус).

По отношению к территории (биотопу) – эвритопные (большая синица) и стенотопные (скопа).

По отношению к пище – эврифаги (врановые) и стенофаги , среди которых можно выделить ихтиофагов (скопа), энтомофаги (осоед, стриж, ласточка), герпетофаги (Птица – секретарь).

Экологические валентности вида по отношению к разным факторам могут быть весьма разнообразными, что создает многообразие адаптаций в природе. Совокупность экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида .

Предел толерантности организма изменяется при переходе из одной стадии развития в другую. Часто молодые организмы оказываются более уязвимыми и более требовательными к условиям среды, чем взрослые особи.

Наиболее критическим с точки зрения воздействия разных факторов является период размножения: в этот период многие факторы становятся лимитирующими. Экологическая валентность для размножающихся особей, семян, эмбрионов, личинок, яиц обычно уже, чем для взрослых неразмножающихся растений или животных того же вида.

Например, многие морские животные могут переносить солоноватую или пресную воду с высоким содержанием хлоридов, поэтому они часто заходят в реки вверх по течению. Но их личинки не могут жить в таких водах, так что вид не может размножаться в реке и не обосновывается здесь на постоянное местообитание. Многие птицы летят выводить птенцов в места с более теплым климатом и т.п.

До сих пор речь шла о пределе толерантности живого организма по отношению к одному фактору, но в природе все экологические факторы действуют совместно.

Оптимальная зона и пределы выносливости организма по отношению к какому-либо фактору среды могут смещаться в зависимости от того, в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия экологических факторов (констелляция ).

Например, известно, что жару легче переносить при сухом, а не влажном воздухе; угроза замерзания значительно выше при низкой температуре с сильным ветром, чем в безветренную погоду. Для роста растений необходим, в частности, такой элемент, как цинк, именно он часто оказывается лимитирующим фактором. Но для растений, растущих в тени, потребность в нем меньше, чем для находящихся на солнце. Происходит так называемая компенсация действия факторов.

Однако взаимная компенсация имеет определенные пределы и полностью заменить один из факторов другим нельзя. Полное отсутствие воды или хотя бы одного из необходимых элементов минерального питания делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Отсюда следует вывод, что все условия среды, необходимые для поддержания жизни, играют равную роль и любой фактор может ограничивать возможности существования организмов - это закон равнозначности всех условий жизни.

Известно, что каждый фактор неодинаково влияет на разные функции организма. Условия, оптимальные для одних процессов, например для роста организма, могут оказаться зоной угнетения для других, например для размножения, и выходить за пределы толерантности, то есть приводить к гибели, для третьих. Поэтому жизненный цикл, в соответствии с которым организм в определенные периоды осуществляет преимущественно те или иные функции - питание, рост, размножение, расселение, - всегда согласован с сезонными изменениями факторов среды, как например с сезонностью в мире растений, обусловленной сменой времен года.

Среди законов, определяющих взаимодействие индивида или особи с окружающей его средой, выделим правило соответствия условий среды генетической предопределенности организма . Оно утверждает, что вид организмов может существовать до тех пор и постольку, поскольку окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Каждый вид живого возник в определенной среде, в той или иной степени приспособился к ней и дальнейшее существование вида возможно лишь в данной или близкой к ней среде. Резкое и быстрое изменение среды жизни может привести к тому, что генетические возможности вида окажутся недостаточными для приспособления к новым условиям. На этом, в частности, основана одна из гипотез вымирания крупных пресмыкающихся с резким изменением абиотических условий на планете: крупные организмы менее изменчивы, чем мелкие, поэтому для адаптации им нужно гораздо больше времени. В связи с этим коренные преобразования природы опасны для ныне существующих видов, в том числе и для самого человека.

1.2.4. Приспособление организмов к неблагоприятным условиям среды

Экологические факторы могут выступать как:

· раздражители и вызывать приспособительные изменения физиологических и биохимических функций;

· ограничители , обусловливающие невозможность существования в данных условиях;

· модификаторы , вызывающие анатомические и морфологические изменения организмов;

· сигналы , свидетельствующие об изменениях других факторов среды.

В процессе приспособления к неблагоприятным условиям среды организмы смогли выработать три основных пути избегания последних.

Активный путь – способствует усилению сопротивляемости, развитию регуляторных процессов, которые позволяют осуществить все жизненные функции организмов, несмотря на неблагоприятные факторы.

Например, теплокровность у млекопитающих и птиц.

Пассивный путь связан с подчинением жизненных функций организма изменению факторов среды. Например, явление скрытой жизни , сопровождающееся приостановлением жизнедеятельности при пересыхании водоема, похолодании и т.д., вплоть до состояния мнимой смерти или анабиоза .

Например, высушенные семена растений, их споры, а также мелкие животные (коловраткиЮ, нематоды) способны выдерживать температуры ниже 200 о С. Примеры анабиоза? Зимний покой растений, спячка позвоночных животных, сохранение семян и спор в почве.

Явление, при котором имеет место временный физиологический покой в индивидуальном развитии некоторых живых организмов, обусловленный неблагоприятными факторами внешней среды, называется диапаузой .

Избегание неблагоприятных воздействий – выработка организмом таких жизненных циклов, при которых наиболее уязвимые стадии его развития завершаются в самые благоприятные по температурным и другим условиям периоды года.

Обычный путь таких приспособлений – миграция.

Эволюционно возникающие приспособления организмов к условиям среды обитания, выражающееся в изменении их внешних и внутренних особенностей носит название адаптации . Существуют различные типа адаптаций.

Морфологические адаптации . У организмов возникают такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных для них условиях.

Например, обтекаемая форма тела у водных животных, строение суккулентов, приспособления галофитов.

Морфологический тип адаптации животного или растения, при котором они имеют внешнюю форму, отражающую способ взаимодействия со средой обитания, называют жизненной формой вида . В процессе приспособления к одинаковым условиям среды разные виды могут иметь сходную жизненную форму.

Например, кит, дельфин, акула, пингвин.

Физиологические адаптации проявляются в особенностях ферментативного набора в пищеварительном тракте животных, определяемого составом пищи.

Например, обеспечение влагой за счет окисления жира у верблюдов.

Поведенческие адаптации – проявляются в создании убежищ, передвижении с целью выбора наиболее благоприятных условий, отпугивание хищников, затаивание, стайное поведение и др.

Адаптации каждого организма определяются его генетической предрасположенностью. Правило соответствия условий среды генетической предопределенности гласит: до тех пор, пока среда, окружающая определенный вид организмов, соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям, этот вид может существовать. Резкое и быстрое изменение условий среды обитания может привести к тому, что скорость приспособительных реакций будет отставать от изменения условий среды, что приведет к иллиминации вида. Сказанное в полной мере относится и к человеку.

1.2.5. Основные абиотические факторы.

Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На Слайде 3 приведена классификация абиотических факторов.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение . Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных ) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 С. Но большинство видов и большая часть их активности приурочены к еще более узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Температура, колеблющаяся от 10 до 20 С (в среднем составляющая 15 С), не обязательно действует на организм так же, как постоянная температура 15 С. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры. С помощью переменной температуры удалось ускорить развитие яиц кузнечика в среднем на 38,6 % по сравнению с их развитием при постоянной температуре. Пока не ясно, обусловлен ли ускоряющий эффект самими колебаниями температуры или усиленным ростом, вызываемым кратковременным повышением температуры и не компенсирующимся замедлением роста при ее понижении.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы в зависимости от потребности их в воде, а следовательно, и от различий местообитания, подразделяются на ряд экологических групп: водные или гидрофильные - постоянно живущие в воде; гигрофильные - живущие в очень влажных местообитаниях; мезофильные - отличающиеся умеренной потребностью в воде и ксерофильные - живущие в сухих местообитаниях.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. Роса может представлять собой значительный, а в местах с малым выпадением дождей и очень важный вклад в общее количество осадков.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности, близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Спектр распределения энергии излучения Солнца за пределами земной атмосферы (рис.6) показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % - в видимой и 10 % - в ультрафиолетовой и рентгеновской областях.

Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк (рис. 7) и его частотные диапазоны различным образом воздействуют на живое вещество. Земная атмосфера, включая озоновый слой, селективно, то есть избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 0,3 до 3 мкм. Более длинно и коротковолновое излучение поглощается атмосферой.

С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72 %).

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Известно, что животные и растения реагируют на изменение длины волны света. Цветовое зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.

Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.

Газовый состав атмосферы также является важным климатическим фактором (рис. 8). Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20 % . Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5 % современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, приведшие к изменению климата и, по-видимому, послужившие толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким содержанием кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

В настоящее время атмосфера Земли имеет следующий состав: кислород ~21 %, азот ~78 %, углекислый газ ~0,03 %, инертные газы и примеси ~0,97 % . Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1 % по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености - снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.

Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:

с образованием угольной кислоты, которая реагирует с известью, образуя карбонаты СО22- и гидрокарбонаты НСО3-. Эти соединения поддерживают концентрацию водородных ионов на уровне, близком к нейтральному значению. Небольшое количество углекислого газа в воде повышает интенсивность фотосинтеза и стимулирует процессы развития многих организмов. Высокая же концентрация углекислого газа является лимитирующим фактором для животных, так как она сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне 0 ? рН? 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % - на оксиды железа Fe2О3, от 0,1 до 5 % - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок - частиц диаметром 0,02-2 мм, ила - частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы . Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот - в ионы аммония NH4+, фосфор - в ортофосфатионы H2PO4-, сера - в сульфатионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух так же как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться в глубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15 % массы почвы, чем в песчанистых - примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.

Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса.

Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразовния.

Химические свойства почвы зависят от содержания минеральных веществ, которые находятся в ней в виде растворенных ионов. Некоторые ионы являются для растений ядом, другие - жизненно не-обходимы. Концентрация в почве ионов водорода (кислотность) рН>7, то есть в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют рН = 8...9, а торфяные - до 4. На этих почвах развивается специфическая растительность.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000.

В почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий. При отсутствии в почве специализированных групп бактерий их роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы и таким образом делают органические вещества доступными для микроорганизмов.

Органические вещества вырабатываются растениями при использовании минеральных солей, солнечной энергии и воды. Таким образом, почва теряет минеральные вещества, которые растения взяли из нее. В лесах часть питательных веществ вновь возвращается в почву через листопад. Культурные растения за какой-то период времени изымают из почвы значительно больше биогенных веществ, чем возвращают в нее. Обычно потери питательных веществ восполняются внесением минеральных удобрений, которые в основном прямо не мо-гут быть использованы растениями и должны быть трансформированы микроорганизмами в биологически доступную форму. При отсутствии таких микроорганизмов почва теряет плодородие.

Основные биохимические процессы протекают в верхнем слое почвы толщиной до 40 см, так как в нем обитает наибольшее количество микроорганизмов. Одни бактерии участвуют в цикле превращения только одного элемента, другие - в циклах превращения многих элементов. Если бактерии минерализуют органическое вещество - разлагают органическое вещество на неорганические соединения, то простейшие уничтожают избыточное количество бактерий. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют ее аэрации. Кроме того, они перерабатывают трудно расщепляемые органические вещества.

К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография) . Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Среди абиотических факторов особого внимания заслуживает огонь или пожар . В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные. Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.

Если низовые пожары случаются регулярно раз в несколько лет, на земле остается мало валежника, это снижает вероятность возгорания крон. В лесах, не горевших более 60 лет, накапливается столько горючей подстилки и отмершей древесины, что при ее воспламенении верховой пожар почти неизбежен.

Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию. Широколиственные же породы лишены защитных приспособлений от огня, он для них губителен.

Таким образом, пожары поддерживают устойчивость лишь некоторых экосистем. Листопадным и влажным тропическим лесам, равновесие которых складывалось без влияния огня, даже низовой пожар может причинить большой ущерб, разрушив богатый гумусом верхний горизонт почвы, приведя к эрозии и вымыванию из нее биогенных веществ.

Вопрос "жечь или не жечь" непривычен для нас. Последствия выжигания могут быть очень разными в зависимости от времени и интенсивности. По своей неосторожности человек нередко бывает причиной увеличения частоты диких пожаров, поэтому необходимо активно бороться за пожарную безопасность в лесах и зонах отдыха. Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе. Вместе с тем необходимо знать, что использование огня специально обученными людьми является частью правильного землепользования.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Популяции концентрируются на определенной территории и не могут быть распространены повсюду с одинаковой плотностью, поскольку имеют ограниченный диапазон толерантности по отношению к факторам окружающей среды. Следовательно, для каждого сочетания абиотических факторов характерны свои виды живых организмов. Множество вариантов сочетаний абиотических факторов и приспособленных к ним видов живых организмов обуславливают разнообразие экосистем на планете.

1.2.6. Основные биотические факторы.

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду , а факторы этой среды называются биотическими . Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.

Выделяют следующие формы биотических отношений. Если обозначить положительные результаты отношений для организма знаком "+", отрицательные результаты - знаком "-", а отсутствие результатов - "0", то встречающиеся в природе типы взаимоотношений между живыми организмами можно представить в виде табл. 1.

Эта схематичная классификация дает общее представление о разнообразии биотических отношений. Рассмотрим характерные особенности отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно .

Конкуренция может быть внутривидовой и межвидовой . Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться:

· жизненного пространства,

· пищи или биогенных элементов,

· места укрытия и многих других жизненно важных факторов.

Преимущества в конкурентной борьбе достигаются видами различными способами. При одинаковом доступе к ресурсу общего пользования один вид может иметь преимущество перед другим за счет:

· более интенсивного размножения,

· потребления большего количества пищи или солнечной энергии,

· способности лучше защитить себя,

· адаптироваться к более широкому диапазону температур, освещенности или концентрации определенных вредных веществ.

Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

Популяции некоторых видов живых организмов избегают или снижают конкуренцию переселением в другой регион с приемлемыми для себя условиями либо переходом на более труднодоступную или трудноусваиваемую пищу, либо сменой времени или места добычи корма. Так, например, ястребы питаются днем, совы - ночью; львы охотятся на более крупных животных, а леопарды - на более мелких; для тропических лесов характерна сложившаяся стратификация животных и птиц по ярусам.

Из принципа Гаузе следует, что каждый вид в природе занимает определенное своеобразное место. Оно определяется положением вида в пространстве, выполняемыми им функциями в сообществе и его отношением к абиотическим условиям существования. Место, занимаемое видом или организмом в экосистеме, называется экологической нишей. Образно говоря, если местообитание - это как бы адрес организмов данного вида, то экологическая ниша - это профессия, роль организма в месте его обитания.

Вид занимает свою экологическую нишу, чтобы выполнять отвоеванную им у других видов функцию только ему присущим способом, осваивая таким образом среду обитания и в то же время формируя ее. Природа очень экономна: даже два вида, занимающих одну и ту же экологическую нишу, не могут устойчиво существовать. В конкурентной борьбе один вид вытеснит другой.

Экологическая ниша как функциональное место вида в системе жизни не может долго пустовать - об этом говорит правило обязательного заполнения экологических ниш: пустующая экологическая ниша всегда бывает естественно заполнена. Экологическая ниша как функциональное место вида в экосистеме позволяет форме, способной выработать новые приспособления, заполнить эту нишу, однако иногда это требует значительного времени. Нередко кажущиеся специалисту пустующие экологические ниши - лишь обман. Поэтому человек должен быть предельно осторожен с выводами о возможности заполнения этих ниш путем акклиматизации (интродукции). Акклиматизация - это комплекс мероприятий по вселению вида в новые места обитания, проводимый в целях обогащения естественных или искусственных сообществ полезными для человека организмами.

Расцвет акклиматизаторства пришелся на двадцатые - сороковые годы двадцатого столетия. Однако по прошествии времени стало очевидно, что либо опыты акклиматизации видов были безуспешны, либо, что хуже, принесли весьма негативные плоды - виды стали вредителями или распространяли опасные заболевания. Например, с акклиматизированной в европейской части дальневосточной пчелой были занесены клещи, явившиеся возбудителями заболевания варроатоза, погубившего большое число пчелосемей. Иначе и не могло быть: помещенные в чужую экосистему с фактически занятой экологической нишей новые виды вытесняли тех, кто уже выполнял аналогичную работу. Новые виды не соответствовали нуждам экосистемы, иногда не имели врагов и поэтому могли бурно размножаться.

Классическим примером тому является интродукция кроликов в Австралию. В 1859 году в Австралию из Англии для спортивной охоты завезли кроликов. Природные условия оказались для них благоприятными, а местные хищники - динго - не опасными, так как бегали недостаточно быстро. В результате кролики расплодились настолько, что на обширных территориях уничтожили растительность пастбищ. В некоторых случаях введение в экосистему естественного врага заносного вредителя приносило успех в борьбе с последним, но здесь не все так просто, как кажется на первый взгляд. Завезенный враг совершенно необязательно сосредоточится на истреблении своей привычной добычи. Например, лисы, интродуцированные в Австралию для уничтожения кроликов, нашли в изобилии более легкую добычу - местных сумчатых, не доставляя запланированной жертве особых хлопот.

Конкурентные отношения отчетливо наблюдаются не только на межвидовом, но и на внутривидовом (популяционном) уровне. При росте популяции, когда численность ее особей приближается к насыщению, вступают в действие внутренние физиологические механизмы регуляции: возрастает смертность, снижается плодовитость, возникают стрессовые ситуации, драки. Изучением этих вопросов занимается популяционная экология.

Конкурентные отношения являются одним из важнейших механизмов формирования видового состава сообществ, пространственного распределения видов популяций и регуляции их численности.

Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество , при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник - жертва.

Виды-жертвы выработали целый ряд защитных механизмов, чтобы не стать легкой добычей для хищника: умение быстро бегать или летать, выделение химических веществ с запахом, отпугивающим хищника или даже отравляющим его, обладание толстой кожей или панцирем, защитной окраской или способностью изменять цвет.

У хищников тоже есть несколько способов добычи жертвы. Плотоядные, в отличие от травоядных, обычно вынуждены преследовать и догонять свою жертву (сравните, например, растительноядных слонов, бегемотов, коров с плотоядными гепардами, пантерами и т.п.). Одни хищники вынуждены быстро бегать, другие достигают своей цели, охотясь стаями, третьи отлавливают преимущественно больных, раненых и неполноценных особей. Другой путь обеспечения себя животной пищей - это путь, по которому пошел человек, - изобретение орудий лова и одомашнивание животных.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Кафедра геоэкологии и природопользования

КУРСОВАЯ РАБОТА

Рельеф как экологический фактор

Краснодар 2012

Введение

1. Вертикальная поясность

2. Экология высокогорных организмов

3. Влияние экспозиции и крутизны склонов на организмы

5. Типы высотной поясности Западного Кавказа

6. Характеристика организмов альпийского и субальпийского пояса северо-западной части Большого Кавказа

Заключение

Введение

Крутизна склона и особенности его поверхности могут сказываться на развитии корневых систем растений, их внешнем строении: в горных условиях ряд древесных пород приобретает низкорослость, стелющиеся (так называемые стланиковые) формы. Рельеф оказывает влияние на процессы почвообразования, причем почвы на склонах особенно ранимы и уничтожение растительности (например, при рубках леса), усиленная пастьба скота вызывают разрушение почв (эрозию).

Главной целью курсовой работы является рассмотрение рельефа как экологического фактора. Основные задачи курсовой работы - рассмотреть вертикальную поясность; изучить экологию высокогорных организмов, влияние экспозиции и крутизны склонов на организмы; рассмотреть роль элементов мезорельефа и микрорельефа в жизни организмов, изучить типы высотной поясности Западного Кавказа; дать характеристику организмов альпийского и субальпийского пояса северо-западной части Большого Кавказа.

Работа состоит из введения, шести глав, заключения и списка используемой литературы, включающего 10 наименований, содержит 5 рисунков.

1 . Вертикальная поясность

Рельеф не принадлежит к таким прямодействующим экологическим факторам, как вода, свет, тепло, почва. Но характер рельефа, местоположение в нем растения или растительного сообщества оказывают большое влияние на жизнь растения, поскольку рельеф часто обусловливает сочетание прямодействующих факторов и перераспределяет в пространстве те количества тепла, света, влаги, которые являются зональными, т. е. зависят от широтного положения местности. Таким образом, рельеф в жизни растений выступает как косвенно действующий фактор.

В зависимости от величины форм различают рельеф нескольких порядков: макрорельеф (горы, низменности, межгорные впадины), мезорельеф (холмы, овраги, гряды, карстовые воронки, степные "блюдца") и микрорельеф (мелкие западники, неровности, пристволовые повышения). Это деление условно, так как точных количественных границ между формами нет. Каждая из них играет свою роль в формировании комплекса экологических факторов для растений. Основной структурной единицей биотического покрова в горах принимается высотный пояс [Горышина, 1979, с. 208].

Растения являются хорошими индикаторами экологических условий и часто дают возможность определения экологического потенциала горной территории в более общем плане, поскольку другие природные компоненты (климатические параметры, почвенные характеристики) могут быть изучены только на ограниченных по площади участках. Поэтому физиономически наиболее часто высотные пояса выделяются по ведущему типу растительности. Пояс растительности рассматривается как сложная комбинация климатически обусловленных растительных сообществ, принадлежащих одному или нескольким типам растительности в пределах определенной высотной ступени, связанных между собой в экологодинамические ряды (фитокатены) на склонах разных экспозиций.

Выраженность поясов растительности в пространстве, их протяженность по высоте часто определяются историческими причинами, но поддерживаются современными местными природными условиями. Контрастность растительности на склонах разных экспозиций характерна для гор с более засушливым климатом. Асимметрия наблюдается как в отношении набора поясов, так и их высотной приуроченности: в пределах одной высотной ступени возникает большая пестрота в растительном покрове.

Протяженность пояса зависит от многих причин, в том числе от географической широты, быстроты смены климатических условий по вертикали и экологической амплитуды растений, образующих пояс. Границы поясов порой сильно изменяются по высоте, особенно большие отклонения могут быть в различных частях пояса или на склонах разных экспозиций, где разница в положении границы пояса может достигать 100 м и более. Границы поясов могут быть достаточно четкими, как, например, при смене широколиственных лесов темнохвойными, но чаще наблюдаются некоторые переходные полосы. Так, у верхней границы темнохвойных лесов на Алтае с переходом в высокогорные пояса хорошо прослеживается постепенная смена сомкнутых лесов лесами с разреженным древостоем и субальпийскими видами в кустарниковом и травяном покрове, затем редколесьями и рединами с участками субальпийских лугов и, наконец, отдельными группами деревьев и одиночными деревцами среди субальпийских лугов и зарослей субальпийских кустарников. Эту переходную полосу часто называют экотоном верхней границы леса.

Высотные пределы поясов зависят не только от абсолютной высоты местности и географического положения. Нередко решающее значение в формировании структуры растительного покрова гор приобретают особенности рельефа, литологии пород, морфологии склонов. С растительным покровом высотных поясов тесно связано их животное население. В современной биогеографической литературе высотный пояс рассматривается как сложное биогеографическое явление, обусловленное географическим положением горной страны и абсолютной высотой местности [Абдурахманов, 2008, с. 306-307].

2 Экология высокогорных организмов

Макрорельеф влияет на распределение типов растительности в крупных географических масштабах, примером чему может служить явление вертикальной зональности в горах. Повышение уровня местности на каждые 100 м сопровождается уменьшением температуры воздуха примерно на 0,5°С. Изменяются также влажность воздуха и инсоляция. В горах наблюдается поясное распределение климата и растительности, в известной степени аналогичное широтно-зональному (рисунок 1). У подножья господствуют типы растительности, характерные для данной географической зоны, выше они последовательно сменяются более холодостойкими (рисунок 2) [Горышина, 1979, с. 208].

Рисунок 1 - Соотношение вертикальной и широтной зональности на североамериканском континенте [Горышина, 1979, с. 209]

1-2а - леса нижнего горного пояса с листопадным подлеском (с преобладанием:1 - дуба грузинского, 2 и 2а - граба кавказского), 3 - смешанные леса с участием вечнозеленого подлеска. 4-6 - буковые леса среднего и верхнего горного пояса (разные типы), 7-10 - буково-гемнохвойные и темнохвойные леса (разные типы), 11 - высокогорные луга и скальная растительность, 12 - граница известняков

Рисунок 2 - Схема вертикальной поясности растительности на Кавказе (Западная Грузия, Гагринско-Бзыбский район) [По Сохадзе,1964, с. 209]

В горах на больших высотах для растений создается весьма своеобразный комплекс экологических условий, их часто называют "альпийскими" независимо от географического пункта.

Приход солнечной радиации в горах увеличен отчасти в связи с некоторой разреженностью атмосферы, но главным образом из-за ее большой прозрачности. В высокогорьях Памира освещенность в дневные часы составляет около 130 тыс. лк, т. е. лишь немногим меньше, чем на границе земной атмосферы. Ультрафиолетовая радиация здесь значительно сильнее, чем на равнинах: так, на высотах 2500 - 4000 м интенсивность радиации в области 290-310 нм (у границы видимого света) в десятки раз больше, чем на уровне моря [Горышина, 1979, с. 208].

Другие характерные черты высокогорных условий - пониженные температуры, в частности, точные заморозки, действующие на растения в некоторых горных районах в течение большей части или даже всего вегетационного периода, сильные ветры, значительно укороченный вегетационный сезон. На больших высотах снижено содержание углекислоты в воздухе. Например, на Памире на высоте 3800 м концентрация СО 2 всего 0,012- 0,020%.

Что касается режима увлажнения в высокогорьях, то он складывается по-разному в зависимости от общеклиматического фона местности: есть горные районы гумидного характера (Альпы, Западный Кавказ, Карпаты) и высокогорья, где растения живут в условиях большой сухости (области "холодных пустынь" на Памире, Тянь-Шане и в других азиатских горных массивах).

Особо своеобразны условия в нивальном (приснежном) поясе, в непосредственной близости от массивов снега и льда, возле границы вечных снегов, тающих ледников и снежников.

В целом альпийские условия представляют пример "крайних" для жизни растений (на верхней границе распространения растительности это выражение имеет не только экологический, но и прямой - пространственный смысл). Они отражаются на всех сторонах жизнедеятельности растений - строении, физиологии, сезонном развитии.

Для высокогорных растений характерен приземистый рост. Во всех высокогорных областях земного шара преобладают низкорослые стелющиеся кустарники и кустарнички, подушковидные и розеточные многолетние травы, дерновинные злаки и осоки, мхи и лишайники. Однако есть и более крупные, весьма своеобразные формы, например распространенные в высокогорьях Южной Америки (Анды) и Африки древовидные розеточные растения из родов Senecio, Espeletia, Lobelia с высоким колонновидным стеблем, несущим наверху крупную розетку мясистых, часто сильно опушенных листьев [Горышина, 1979, с. 2010].

Характерная морфологическая черта многих высокогорных приземистых растений (кустарников, кустарничков) - значительное преобладание подземной массы по сравнению с надземной.

Низкорослость высокогорных растений, по-видимому, связана как с адаптацией к низким температурам, так и с формообразующим действием радиации, богатой коротковолновой частью спектра которая тормозит ростовые процессы. Еще в конце прошлого века классические опыты французского ботаника Боннье показали, что многие растения с "обычной" формой роста, имеющие длинные цветоносные стебли, после пересадки в горы приобретали розеточную форму.

В анатомическом строении высокогорных растений есть ряд черт, которые отчасти способствуют защите от избыточной радиации, отчасти связаны с особенностями водного режима и некоторых сторон обмена веществ в высокогорьях: утолщение покровных тканей, опушение, усиленное развитие механических тканей, придающих устойчивость к сильным ветрам. Однако в горах довольно обычны и растения с листьями, лишенными опушения и воскового налета. С увеличением высоты местности, как правило, уменьшаются размеры клеток, и возрастает плотность тканей, увеличивается число устьиц на единицу поверхности листа и уменьшаются их размеры; иными словами, наблюдаются изменения в сторону ксероморфоза. Особенно четко они выражены у растений, растущих на скалах. Напротив, у видов, обитающих вблизи талых вод или других источников увлажнения, листья крупнее, а ксероморфные черты выражены гораздо слабее.

Низкие температуры и сильная освещенность способствуют образованию больших количеств антоциана, отсюда - глубокие, насыщенные тона окраски цветков. Сочетание крупных яркоокрашенных цветков и небольших листьев при малом (иногда совсем крохотном) росте - характерная черта многих альпийских растений.

Основные физиологические процессы у растений в высокогорных условиях характеризуются повышенной интенсивностью. Прежде всего, это относится к газообмену. На больших высотах отмечены очень высокие величины фотосинтеза (у некоторых видов до 50-100 мг СО 2 на 1 г листа в 1 ч). Правда, в гумидных высокогорьях (Альпы, Гиссарский хребет) фотосинтез довольно умеренный. Тем не менее, в целом по мере поднятия в горы прослеживается тенденция к увеличению фотосинтеза. Она отмечается и при сопоставлении интенсивности фотосинтеза разных видов в высотных поясах [Горышина, 1979, с. 211-212].

Характерная черта физиологии и биохимии высокогорных растений - повышение интенсивности окислительно-восстановительных процессов, увеличение активности участвующих в них ферментов (каталазы, пероксидазы). Более низкие, чем у равнинных растений, температурные оптимумы их работы. Во многих исследованиях отмечено усиление дыхания растений на больших высотах, а следовательно, увеличение энергии, освобождающейся при распаде сложных соединений. По современным представлениям это связано с тем, что в трудных условиях горной среды у растений появляются такие пути усиленного потребления энергии дыхания в обмене веществ, каких нет на равнинах. Один из них - использование энергии для синтеза веществ в процессе репарации.

Водный режим высокогорных растений во влажных областях вполне "благополучен" за исключением засушливых условий (особенно в горных холодных пустынях), где они испытывают влияние таких особенностей среды, как малая доступность почвенной влаги из-за низких температур, а иногда и сильная физическая сухость почвы в сочетании с опасностью большой транспирации при сильном освещении. Поэтому с увеличением высоты в основных показателях водного режима растений часто отмечаются сдвиги: уменьшение общей оводненности тканей при повышении доли связанной воды, возрастание осмотического давления и водоудерживающей способности листьев.

Общая экологическая черта различных физиологических процессов у высокогорных растений - снижение температурных оптимумов, хорошо заметное при сравнении с температурными адаптациями растений низкогорных или равнинных местообитаний.

В целом сопоставление основных физиологических показателей у горных и равнинных видов (а для широкораспространенных видов - у соответствующих популяций) показывает, что на больших высотах жизнедеятельность растений значительно интенсивнее. Очевидно, эволюция высокогорных растений шла в направлении наиболее полного использования всех возможностей короткого и холодного вегетационного периода.

Существенно изменяется при поднятии в горы сезонное развитие растений. Чем выше, тем позже тает снег весной и раньше выпадает осенью, тем короче вегетационный период, тем позже начинается весеннее развитие и раньше наступает осень. Весной, поднимаясь в горы, можно видеть сезонное развитие одного и того же вида в обратной последовательности (например, в низкогорном поясе - цветение, в среднем - бутонизацию, еще выше - начало вегетации и, наконец, только появление из-под снега). Напротив, осенью при подъеме в горы можно наблюдать ускоренное наступление осенних фенофаз (осеннее расцвечивание листвы, листопад, отмирание надземных частей).

В связи со сжатыми сроками вегетации в высокогорьях темпы сезонного развития здесь значительно ускорены. Это хорошо заметно по скорости прохождения фенологических фаз на разных высотах в горах Кавказа: например, фаза бутонизации сокращается на 5-7 дней с поднятием на 100 м (на больших высотах это сокращение меньше), что подтверждается и в экспериментальных пересадках растений на разные высоты.

Разные виды растений неодинаково относятся к высотной зональности. Одни имеют широкий высотный диапазон и растут в разных поясах, но при этом у них сильно изменяются внешний облик и основные стороны жизнедеятельности. Примером могут служить черника и голубика в Карпатах, распространенные от низкогорного до альпийского пояса, типчак в горах Кавказа. Однако широкий высотный диапазон не всегда связан с большой экологической пластичностью растений: так, встречающийся в Тянь-Шане на разных высотах шафран Королькова - Crocus korolkovii во всех высотных поясах вегетирует только вскоре после таяния снега, то есть в одинаковых гидротермических условиях, хотя сроки его развития и приходятся на разное время, с января по июнь. Это пример очень узкой экологической амплитуды при широком высотном диапазоне.

Другие виды распространены в ограниченных пределах нескольких или одного (иногда довольно узкого) высотного пояса и исчезают при переходе в соседние, сменяясь замещающими видами. Так, в горах на разных высотах растут близкие виды - герань холмовая - Geranium collinum и герань скальная - G. saxatile, имеющие еще внутривидовые высотные формы с морфологическими и биохимическими различиями и узкой экологической амплитудой. Иногда вид выходит за пределы определенной высотной зоны, но при этом поселяется уже в совсем иных местообитаниях [Горышина, 1979, с. 213-216].

3. Влияние экспозиции и крутизны склона на организмы

Наряду с высотой над уровнем моря условия для жизни растений в горах в большой мере определяются экспозицией и крутизной склонов. Известно, что на склонах южной экспозиции угол падения солнечных лучей ближе к прямому, чём на горизонтальной поверхности (за исключением экваториальных областей) (рисунок 3).

Рисунок 3 - Различие угла падения солнечных лучей на склоны южной и северной экспозиции [Горышина, 1979, с. 217]

Склоны северной экспозиции получают прямые лучи под очень острыми углами ("скользящие" лучи), а при большой крутизне в дневные часы довольствуются лишь рассеянной радиацией. Отсюда существенные различия в прогревании воздуха и почвы, режиме увлажнения (в частности, скорости снеготаяния и иссушения почвы) и других элементах микроклимата. Нередко при переходе с северного склона на южный условия так резко отличаются, как будто расстояние составляет несколько сот километров к югу в широтном направлении.

В связи с неодинаковыми условиями на склонах разной экспозиции заметно различается состав растительности, облик и состояние растений. Известно, что на южных склонах граница древесной растительности поднимается гораздо выше, чем на северных. В целом границы всех зон сдвигаются кверху, а в составе растительных группировок преобладают более южные и теплолюбивые элементы.

Различны в зависимости от экспозиции и морфофизиологические особенности растений одного и того же вида. Так, туркестанский можжевельник арча (Juniperus turkestanica) в субальпийском поясе гор Киргизии обычно имеет стланиковую форму (в возрасте 300-500 лет длина стволов всего 2-3 м), но у скал южной экспозиции он растет в виде высоких стройных деревьев, поскольку здесь обеспечена защита от зимнего высыхания и вымерзания. Сравнительное исследование. деревьев бука на склонах северной и южной экспозиции в итальянских Альпах показало, что на северных склонах структуре листьев в целом свойственны более "теневые" черты, а водному режиму - более гигрофильные (меньшая транспирация, большая оводненность листьев). Однако в более напряженных условиях водоснабжения и температуры могут иметь место иные соотношения: так, растения злаково-разнотравных лугов Кавказа больше транспирируют на северных склонах. Влияние различной экспозиции отражается на составе растительности не только в случае крупных элементов рельефа; оно хорошо заметно и на небольших холмах, повышениях, валунах [Горышина, 1979].

Влияние крутизны склона на условия жизни растений сказывается главным образом через особенности почвенной среды, водного и температурного режима. Сильный сток воды и смыв почвы с крутых склонов создают трудные условия для поселения растений. Преимущество здесь имеют виды литофильного характера с глубокой и цепкой корневой системой, экономно расходующие воду. На склонах с более мягким грунтом (например, крутые стенки глубоких оврагов) хорошо закрепляются растения-пионеры с поверхностной и разветвленной корневой системой. В горных странах с весьма сложным рельефом создается очень сложное переплетение влияний - широтных факторов, вертикальной зональности, различий экспозиции склонов, их крутизны, степени изрезанности, а также особенностей почвенно-грунтовых условий, водного режима. Поэтому картина распределения экологических факторов и растительности может быть сильно усложнена. Так, в замкнутых котловинах, даже на небольшой высоте, скапливается более холодный воздух, чем в вышележащих поясах; в таких случаях возможны инверсии (обращения) зональности. Например, очень наглядны инверсии в предгорьях Низких Татр в Словакии со сложным рельефом в области карстовых явлений: высокогорные виды спускаются здесь очень низко по холодным и влажным ущельям, а многие теплолюбивые виды низин, напротив, поднимаются по хорошо освещенным и прогретым известняковым хребтам выше своего обычного высотного ареала.

В хорошо защищенных элементах рельефа могут создаваться чрезвычайно благоприятные для растений условия, способствующие сохранению особо теплолюбивых реликтовых форм. Таковы, например, широкие расщелины между скалами над Дунаем в Восточной Сербии, защищенные от ветров и испытывающие увлажняющее действие реки. В них сохранились многие редкие, реликтовые и эндемичные формы.

4. Роль элементов мезорельефа и микрорельефа в жизни организмов

Для менее крупных, чем горы, форм рельефа - расчлененных возвышенностей - изменение ландшафтов и, в частности растительного покрова, с высотой выражено очень слабо. В лесной зоне примеси дуба и ясеня в древостоях приурочены к повышенным местам, а на низменных равнинах, подверженных заболачиванию, поселяются более северные элементы. Конечно, здесь играет роль не столько само положение над уровнем моря, сколько геоморфологические факторы (расчлененность рельефа) и связанное с ними изменение почвенно-гидрологических условий.

Основное значение элементов мезорельефа состоит в перераспределении зональных экологических факторов. Сочетание различных элементов мезорельефа, иногда очень сложное, может до неузнаваемости изменить зональные климатические и почвенные факторы и обусловить поселение совершенно особой растительности, как это имеет место, например, в долинах крупных рек. По выражению А. П. Шенникова, долины рек - как бы дороги, по которым климат двух соседних широтных зон проникает один в другой. И, напротив, в каждой зоне имеются наиболее свободные от влияния рельефа местообитания, наиболее полно отражающие характерные для данной географической зоны особенности климата и почв. Такие местообитания (как правило, ровные, равнинные) называют плакорными или плакорами (ровнядями). Обычно это водораздельные равнины со сравнительно однородными условиями или их отдельные участки. Влияние мезорельефа на сочетание экологических факторов особенно ярко проявляется там, где те или иные факторы близки к минимуму. Например, в южных областях с сухим климатом рельеф существенно влияет на распределение влаги для растений. Скопление снега и талых вод в отрицательных элементах рельефа - оврагах и балках - делает возможным произрастание овражных (так называемых байрачных) лесов в безлесной степи юга европейской части СССР. На плоской равнине лесостепи Западной Сибири в незначительных по высоте замкнутых понижениях влажность почвы настолько значительна, что там может расти древесная растительность в виде лесных островков - "колков". В ковыльных степях Украины едва приметные, но широкие понижения - "поды" - весной собирают талые воды, что обеспечивает более мезофильный состав степного травостоя. Напротив, слегка повышенные участки степи заняты более ксерофильными растительными группировками.

Весьма наглядный пример влияния рельефа на комплекс экологических факторов и растительность представляет сопоставление заросших овражных склонов разной экспозиции в южной части лесостепной зоны. В более восточных районах лесостепной зоны по растительности можно почти безошибочно определить экспозицию склона: северные и северо-западные заняты лесами, южные и юго-восточные - безлесные, остепненные.

Можно привести примеры и из более северных районов: в Московской области при зарастании песчаных откосов подрост ели и сосны, многие лесные травы и мхи предпочитают селиться на северном склоне, на котором вследствие этого формируется более богатый видовой состав.

В северных областях, где мало тепла, влияние мезорельефа также очень велико. Здесь повышенные элементы рельефа (в частности, крутые склоны речных долин) более дренированы и более прогреты, особенно склоны южной экспозиции. В районах многолетнемерзлых горных пород ("вечной мерзлоты") на таких элементах рельефа почва оттаивает на большую глубину. В тундре на склонах южной экспозиции развиваются более теплолюбивые кустарничковые группировки (рисунок 4). По склонам на север проникают фрагменты более южных типов растительности (например, красочно цветущие участки лугов - тундровые луговины).

Преобладающие виды: 1 - багульник, 2 - карликовая береза, 3 - карликовая ива, 4 - луговые злаки, 5 - осоки, 6 - лишайники. Грунты: 7 - глинистые, 8 - песчаные, 9 - торфяные

Рисунок 4 - Влияние рельефа на распределение растительности в тундре. Оленья гряда в Большеземельской тундре [по Андрееву, 1932, с. 222]

Кроме различия видового состава, на склонах разной экспозиции отмечается неодинаковая скорость фенологического развития, что особенно хорошо заметно по весенним явлениям - оттаиванию почвы, отрастанию побегов, развертыванию почек, зацветанию. В отрицательных элементах рельефа фенологическое развитие растений может задерживаться из-за длительного сохранения снега. Закономерности влияния склонов разной экспозиции на растительный покров хорошо отражены в "правиле предварения", сформулированном В. В. Алехиным: "Плакорный вид или плакорная растительность предваряется на юге или на севере в соответствующих условиях местообитания", иными словами, растительность южных склонов на какой-либо территории содержит элементы более южных плакорных мест, а растительность северных склонов - элементы более северных плакорных мест. Это правило применимо для многих южных лесостепных и степных районов, где почвы хорошо дренированы, однако в других районах оно нарушается такими явлениями, как заболачивание (на севере) или засоление (на юге).

Микрорельеф может быть связан как с неровностями поверхности почвы, так и с особенностями роста самих растений (образование кочек крупнодерновинными злаками и осоками, пристволовые повышения в лесу). Некоторые формы микрорельефа имеют зоогенное происхождение (выбросы землероев - кротовины, сурчины).

Микрорельеф способствует проявлению различий в среде обитания растений, незначительных по пространственной протяженности, но достаточно резко выраженных по характеру действия экологических факторов. Поэтому от микрорельефа часто зависит микроструктура растительного покрова - черед вание на небольшом пространстве видов с разными экологическими особенностями. Примеры - грядово-мочажинный комплекс на болотах (сочетание более ксерофильных и крайне гигрофильных элементов); мозаичная растительность кочковатого луга; комплексная полупустыня в Прикаспии, в зависимости от мелких разностей микрорельефа - сочетание небольших пятен черноземных почв, солонцов и глинистых почв с разным видовым составом растительного покрова.

Особенно заметно влияние микрорельефа в крайних условиях существования: так, в Восточной Сибири на многолетней мерзлоте оттаивание кочек идет быстрее, чем западин; в результате в редкостойных сосновых и лиственничных лесах разница в сроках начала вегетации и зацветания багульника на расстоянии нескольких метров может достигать полумесяца (что соответствует нескольким сотням километров по широте).

5. Типы высотной поясности западного Кавказа

Кавказ - горная страна, горные системы определяют его географическую специфику, обусловливают исключительное разнообразие природных особенностей. С горным рельефом связана высотная зональность ландшафтов Кавказа, "спектр" которой здесь очень широк - от субтропических ландшафтов на низменностях Закавказья до вечных снегов и льдов в горах. В более северных и более низких горах нет таких больших изменений природных условий по вертикали: там отсутствуют свойственные Кавказу субтропические и высокогорные ландшафтные зоны.

Кавказ - сложная система высоких горных хребтов альпийской складчатости, нагорий, плато и тектонических низин. Для Большого Кавказа, вытянутого с северо-запада на юго-восток на 1100 км, характерны высокогорья, альпийский тип рельефа, встречаются крупные ледники длиной до 12 км и более.

Кавказ представляет собой ландшафтный узел, место пересечения двух природных поясов - умеренного с субтропическим. На его территории выражены четыре основных типа высотной поясности: степной умеренного пояса, полупустынный умеренного пояса, полупустынный средиземноморский и влажнолесной средиземноморский. Структура высотной поясности во многих случаях полная - от зональных ландшафтов низин до альпийского пояса с вечными снегами.

Западный Кавказ - это часть Большого Кавказа к западу от Эльбруса. Высоты Западного Кавказа не превышают 4000 м (г. Домбай-Ульген - 4046 м). По характеру рельефа и геологическому строению Западный Кавказ распадается на два участка: Северо-Западный, простирающийся от начала Большого Кавказа (станица Гостагаевская) до г. Фишт, и собственно Западный - от г. Фишт до г. Эльбрус. Разделяет их меридиональный Пшехско-Адлерский разлом. [Ефремов, 1988, с. 45]

Растительный покров северо-западной части Большого Кавказа отличается сложностью оригинальностью, что связано с многообразием физико-географических условий: влиянием рельефа, близостью Черного моря, различием типов климата и почв, широтно-долготными координатами. Флора и растительный покров прошли длительный эволюционный путь формирования и распада различных типов флористических комплексов. В растительном покрове отразилась история становления Кавказа как горной страны, флуктуации ледникового периода.

На северо-западе Большого Кавказа четко проявляется широтная зональность и вертикальная поясность. На столь незначительной территории можно познакомиться с кубанскими степями, еще сохранившимися, хотя и в небольшом количестве, в Успенском районе на отрогах Ставропольской возвышенности и на Таманском полуострове, с уникальными плавневыми экосистемами.

Единого мнения о количестве поясов и критериев их разграничения в регионе нет. Так, Е.В.Шифферс в 1953 г. на Северо-Западном Кавказе выделяет шесть поясов: нивальный - выше 3200 м над уровнем моря; субнивальный - от 2800 м до 3200 м; альпийский - 2200-3300 м над уровнем моря; субальпийский - 1800-2200 м; лесной - от 100-300 м до 1800-2000 м; лесостепной - 100-300 м. А.А.Колаковский (1961) на южном макросклоне рассматривает семь поясов: пояс приморской растительности - 100-300 м; субтропического леса - 300-600 м; буковых лесов - 600-1200 м; буково-пихтовых - до 1800-1900 м; пояс березняков и высокотравий занимает высотный предел 100-150 м; пояс субальпийских или гемикрио-фильных среднетравных лугов и кустарников - от 1900-2000 м до 2300 м; пояс альпийских (эукриофильных) низкотравных лугов - до 2600-2700 м

На Западном Кавказе можно выделить несколько типов поясности (рисунок 5). Прежде всего, это Северо-Кавказский Кубанский тип поясности. Он выражен на северном макросклоне.

1 - лесостепь; 2 - дубовые леса; 3 - буковые леса; 4 - буково-пихтовые леса; 6 - дубовые леса; 7 - пояс литоральной растительности; 8 - субтропические колхидские леса; 9 - сосновые леса; 10 - субальпийское криволесье; 11 - субальпийские луга; 12 - альпийские луга; 13 - пояс горных степей.

Рисунок 5 - Типы вертикальной поясности на северо-западной части Большого Кавказа [Литвинская, 2001, с. 10]

Первый пояс - нижний лесостепной - до 500-600 м над уровнем моря. Климат умеренно-континентальный, среднее годовое количество осадков 660 мм. В нем выделяется две полосы:

а) черешчатодубовых лесов со значительной примесью ясеня, осины, клена татарского и полевого в условиях равнинного рельефа в комплексе с настоящими и кустарниковыми степями на слитых черноземах и темно-серых горно-лесных почвах;

б) полоса черешчатодубовых лесов со значительным участием граба обыкновенного, дуба скального в предгорьях в пределах высот 300-600 м над уровнем моря на светло-серых горно-лесных почвах.

Средний лесной пояс скальнодубовых лесов в комплексе с грабовыми, грабово-буковыми сообществами. Занимает высоты от 600 до 800 м над уровнем моря, где распространены бурые горнолесные и бурые горно-лесные оподзоленные почвы. Климат умеренно-континентальный. Осадков выпадает 880-1000 мм в год, среднегодовая температура 7-8°С.

Верхний лесной пояс буковых, буково-пихтовых и пихтовых лесов в пределах высот от 800 м до 1500-1600 м над уровнем моря. Климат умеренно-континентальный, среднегодовое количество осадков 800-1000 мм, среднегодовая температура от 5-7°С до 8-9°С, в данном поясе выделяется три полосы:

а) полоса буковых лесов от 800 до 1200 м над уровнем моря на бурых горно-лесных почвах;

б) полоса буково-пихтовых лесов от 1100 м до 1400 м н.у.м. на бурых горно-лесных оподзоленных почвах;

в) полоса пихтовых лесов от 1400 м до 1800 м над уровнем моря на бурых горно-лесных оподзоленных почвах.

Пояс высокогорной растительности характеризуется чередованием субальпийских криволесий, зарослей кавказского рододендрона, высокотравий, субальпийских и альпийских лугов. Он занимает пределы высот от 1700 до 2700 м над уровнем моря. Климат холодный и влажный, среднегодовое количество осадков 1000-1200 мм. Пояс включает три полосы:

а) полоса субальпийских буковых и пихтовых криволесий на высоте 1700-1800 м, зарослей рододендрона кавказского на торфянистой почве и высокотравий;

б) полоса субальпийских лугов от 1500 до 2300 м над уровнем моря на горно-луговых почвах в комплексе с растительностью скал и осыпей; местами субальпийские сообщества сочетаются с альпийскими;

в) полоса альпийских лугов от 2300 до 2600 м над уровнем моря в сочетании с альпийскими коврами (до высоты 2400 м) из колокольчика Биберштейна (Campanula biebersteiniana L.), манжеток (Alchemнlla xanthochlуra L.), лютика Елены (Ranunculus helenae Albov), осоковые и кобрезиевые альпийские луга, травяные болота (2300-2350 м), растительность скал и осыпей.

На южном макросклоне в юго-восточной части, где Главный Кавказский хребет имеет в регионе максимальные высоты, выделяется Колхидский тип поясности. Он нигде более в России не встречается. Колхидский тип начинается у берега Черного моря нижним поясом литоральной растительности и ксерофитных кустарников. Выражен он до высоты 100 м над уровнем моря и представлен сообществами литоральных видов мачка желтого (Glaucium flavum L.), синеголовника приморского (Eryngium maritimum L.), молочая (Euphorbia paralias L.), зарослями ксерофитных кустарников из держи-дерева (Paliurus spina-chrysti L.), авраамова дерева (Vitex agnus-castus L.) и сообществами из сосны пицундской. Климат влажный субтропический. Среднегодовая температура 14°С, среднегодовое количество осадков 1400 мм. Почвы песчаные, галечниковые, перегнойно-карбонатные на приморских обрывах, сильно эродированные. Нижний лесной пояс субтропических колхидских лесов из каштана посевного (Castanea sativa L.), дуба Гартвиса (Quercus hartwissiana L.), дуба грузинского (Q. iberica L.), бука восточного (Fagus orientalis L.), граба, ольхи (Alnus barbata L.), лапины крылоплодной (Pterocarya pterocarpa L.), инжира (Ficus carica L.), самшита (Buxus colchica L.). Почвы аллювиальные, желтоземы и желтоземно-подзолистые. Климат субтропический с положительными зимними температурами, высокими показателями осадков (1200-1500 мм), выпадающих, в основном, в холодный период, и непрерывной вегетацией. Пояс занимает пределы высот от 100 до 600 м над уровнем моря. Средний горный лесной пояс буковых лесов занимает высоты от 600 до 1200 м над уровнем моря. Нередко в нем произрастают каштановые леса, леса из дуба грузинского (Quercus iberica L.), кленов с вечнозеленым подлеском из лавровишни (Laurocerasus officinalis), падуба (Ilex colchica), рододендрона понтийского (Rhododendron ponticum). Климат умеренно-континентальный, среднегодовая температура 10°С, среднегодовое количество осадков 1800 мм, почвы бурые горно-лесные.

Верхний лесной пояс буково-пихтовых лесов выражен на высоте от 900 до 1700 м над уровнем моря. Климат умеренно-континентальный, средняя температура года 3°С. Почвы бурые оподзоленные.

Пояс высокогорной растительности представлен целым комплексом растительных формаций, которые подразделяются три высотных полосы:

а) полоса березовых криволесий и высокотравий. Занимает полосу в 100-150 м над пихтово-буковыми лесами. Кроме березового криволесья, здесь произрастают кленовники, буковое и сосновое криволесье. Постоянным компонентом является субальпийское высокотравие, где произрастают гигантские травы: телекия (Telekia speciosa), дельфиниумы (Delphinium speciosum, D. pyramidatum), борец (Aconitum orientale), борщевик (Heracleum mantegazzianum). Климат холодный и влажный, средняя температура года 3,5°С. Характерен мощный снеговой покров зимой и высокая влажность воздуха.

б) полоса субальпийских лугов и кустарников. В растительность субальпийских лугов вкраплены заросли рододендрона кавказского (Rhododendron caucasica), можжевельников (Juniperus hemisphaerica, J.sabina), верещатников (Vaccinium vitis-idaea, Empetrum caucasicum), ив (Salix caprea, S. kazbekensis). Климат влажный, осадков выпадает до 2600 мм в год, снежный покров мощностью до 6 м, снеговая линия проходит на высоте 2650 м. Почвы бурые горно-луговые, перегнойно-дерново-луговые.

в) полоса альпийских лугов простирается с 1800 м до 2100 м над уровнем моря. Здесь представлены альпийские ковры, низкотравные луга: злаковые, осоково-кобрезиевые, разнотравные и другие.

На южном макросклоне в северо-западной части Черноморского побережья Кавказа выражен средиземноморский (крымский) тип поясности. Он представлен совершенно другими типами растительности и в корне отличается от колхидского типа. В нем выделяется четыре пояса. Самый нижний пояс литоральной растительности, кустарниковых зарослей из держи-дерева, сумаха кожевенного (Rhus coriaria), пузырника (Colutea cilicica), приморских сообществ сосны пицундской (Pinus brutia pityusa). Пояс занимает высоты до 100 м. Климат сухой субтропический (средиземноморский). Далее располагается нижнегорный пояс гемиксерофильных лесов и ксерофитных редколесий. Характеризуется господством пушистодубных лесов, арчевников, фисташников, лесов из сосны пицундской (Pinus brutia pityusa) и сосны крымской (Pinus pallasiana), нагорно-ксерофитных группировок. Занимает приморские хребты до высоты 500 м над уровнем моря. Климат сухой субтропический, отличается высокими летними температурами (34-40°С), средняя температура года около 12°С, среднее годовое количество осадков от 420 - 760 мм). Почвы дерново-карбонатные, коричневые, сильно эродированные. В данном поясе выделяются следующие полосы:

а) полоса лесов из сосны пицундской (Pinus brutia pityusa) до высоты 200 м над уровнем моря;

б) полоса редколесий из можжевельников (Juniperus), фисташки туполистной (Pistacia mutica Mey), леса из сосны крымской (Pinus pallasiana), томилляры. Высотный пределы полосы - 200-400 м;

в) полоса пушистодубовых лесов (400-500 м над уровнем моря) в комплексе с можжевельниками, сосной Коха (Pinus kochiana), нагорно-ксерофитными группировками, томиллярами.

Среднегорный пояс представлен скальнодубовыми лесами в пределах высот 400-700 м над уровнем моря в комплексе с пушистодубовыми лесами и зарослями грабинника. Почвы дерновокарбонатные, бурые лесные. На водоразделах распространены послелесные луга.

Средиземноморский тип поясности заканчивается поясом горных степей (600-900 м над уровнем моря) из ковыльно-разнотравных сообществ с гемиксерофильными средиземноморскими элементами: чебрецом маркотхским (Thymus markhotensis), шалфеем раскрытым (Salvia ringens), асфоделинами крымской и желтой (Asphodeline taurica, A.lutea), железницей (Sideritis euxina), дубровником обыкновенным (Teucrium chamaedrys).

Следует отметить, что это не типичный крымский тип поясности, так как здесь пояс сосны крымской представлен фрагментарно, а пояс каменистых высокогорных лугов и можжевелового стланника не выражен.

Отмеченные закономерности в смене растительности с высотой имеют лишь самый общий характер. Поясность довольно часто нарушается, что обусловлено не только естественными причинами (микроклиматическими и почвенными условиями, сложной орографией, влиянием экспозиции и крутизны склонов), но и деятельностью человека. Так, верхняя граница леса на Фишт-Оштеновском массиве значительно снижена и прослеживается на высоте 1600-1700 м, что обусловлено не природными факторами, а неумеренным выпасом и рубками.

Наиболее низко граница леса проходит в верховьях Белой и Пшехи, и пихтовые сообщества уже встречаются на высоте 650 м, что объясняется близостью Черного моря и свободным проникновением влажных воздушных масс в данном понижении Главного Кавказского хребта. Отмечаются случаи инверсии лесных поясов в область продольных долин, где дубовые леса занимают южные склоны до высоты 1500 м над уровнем моря, в то время как северные склоны покрыты пихтовыми лесами. В междуречье Лаба-Белая бук опускается до 150 м над уровнем моря. Основные массивы буковых лесов сосредоточены в среднегорной полосе северных склонов Передового хребта до высоты 1400 м над уровнем моря, но с высоты 700 м в состав первого яруса к буку начинает примешиваться пихта Нордманна, с высоты 1000 м произрастают чистые пихтарники и пихтово-буковые сообщества.

На Западном Кавказе четкой границы между поясами буковых и пихтовых лесов нет, хотя оптимальные условия для бука складываются на высоте 700-1300 м, а для пихты - 1000-1600 м. На северных отрогах Главного хребта пояс буковых лесов выпадает, и на высотах 1100-1400 м преобладают смешанные буково-пихтовые сообщества, сменяясь выше по склону чистыми пихтарниками. В высотном распространении бука отмечено снижение верхней границы чистых букняков с 1400-1500 м над уровнем моря до 1000-1100 м по мере приближения к водораздельному хребту.

На северных экспозициях Скалистого хребта на пониженных отрогах произрастают чистые букняки, а в глубине гор - буково-пихтовые леса. В целом, следует отметить, что на Западном Кавказе на периферических хребтах отмечается резкое снижение верхней границы леса по сравнению с Главным Водораздельным хребтом на 500 м [Литвинская, 2001, с. 10-13].

6. Характеристика организмов альпийского и субальпийского пояса Северо-Западной части Большого Кавказа

Высота 1900-2100 метров над уровнем моря - субальпийский пояс растительности. Это сложный комплекс различных типов растительности. За верхней границей леса, заканчивающейся редколесьем и криволесьем, начинается субальпийский пояс. Субальпийский пояс ассоциируется с субальпийскими лугами, но луга - это лишь один из компонентов растительности этого пояса. Здесь есть также заросли низкорослых можжевельников, родореты и субальпийское высокотравье.

Родореты - это кустарниковая форма вечнозеленого рододендрона кавказского (Rhododendron caucasicum), реликта горных тундр третичного периода. Заселяют родореты торфяные почвы субальпийского пояса, нередко заходят и в альпийский. Рододендрон кавказский (Rhododendron caucasicum) образует хотя и невысокие, но непроходимые заросли. Это обстоятельство, а также наличие под кустами толстого слоя слабо разложившегося торфа с кислыми почвами создает специфические условия, вынести которые могут немногие растения. Изредка видны кое-где рябина кавказская (Sorbus caucasica) и ивы (Salix). Мелкие кустарнички из семейства брусничных встречаются чаще, наиболее постоянный спутник рододендрона кавказского - черника, голубика и брусника - типично северные ягоды.

Можжевельники разбросаны по щебнистым склонам и осыпным местам на значительной площади, но никогда не смыкаются. Это особый субальпийский вариант скально-осыпной растительности. Особенно четко они выделяются на желтовато-зеленом фоне угасающей растительности в начале осени. Сверху шапка можжевельников плотная, а внутри кустарников - хаос искривленных стеблей, образующих невероятные переплетения.

На высоте более 2000 метров уже не встретишь лесов, здесь открывается простор субальпийских высокотравных лугов. Разгор цветения субальпийских лугов - середина июля. В субальпийских лугах много редких растений. В высокогорной флоре северо-западного Кавказа насчитывается 287 эндемичных видов, есть эндемики Кавказа. Своим происхождением они связаны с Главным Кавказским хребтом. Это гусиный лук серно-желтый (Gagea), тюльпан Липского (Tulipa lipskyi Grossh), валериана скальная (Valeriana saxicola), остролодочник кубанский, горечавка оштенская (Gentiana oschtenica L.). Только из семейства астровых (сложноцветных) в высокогорьях произрастает 45 эндемичных видов. Всего же в этих местах обнаружено и зарегестрированно сто представителей из семейства сложноцветных [Литвинская, 1982, с. 115].

В горных районах лесные экосистемы испытывают действия комплекса факторов, связанных с рельефом: он влияет на формирование лесорастительных условий [Фомин, Шавнин 2002, с. 170].

Среди древесных форм есть эндемики. Это три вида ив - безногая (Salix appendiculata L.), кавказская (Salix caucasica L.) и шелковистая (Salix pantosericea L.). 287 видо растений произрастает в высокогорьях северо-западного Кавказа и нигде больше в мире не встречаются.

Субальпийское высокотравье отличается разнообразным флористическим составом. Некоторые его представители являются третичными реликтами: виды борщевика (Heracleum), колокольчика (Campanula), девясила (Inula), телекии (Telekia) и лилии (Lilium).

Высота 2300-2500 метров над уровнем моря - последний форпост травянистой растительности, альпийский пояс. Он простирается от субальпики до верхних пределов жизни в горах. Растения альпики стремятся как можно ближе прижаться к земле, компактнее собрать свои вегетативные органы в плотный пучок или подушку. Подобные формы выработались в длительном процессе эволюции многих поколений, стали ответной реакцией растений на постоянную напряженность природных условий высокогорий. Очень короткий вегетационный период, всего 2-2,5 месяца.

В альпике различают луга, где основные строители - злаки и осоки. Это так называемые плотнодерновинные луга. Здесь самые обычные представители - овсец, душистый колосок. Много разнотравья: лядвинец кавказский, тимьян кавказский (Thymus nummularius).

Есть в этом поясе и другой тип растительности - альпийские ковры. От лугов они отличаются тем, что злаки и осоки играют в них второстепенную роль. Процесс дернообразования выражен здесь больше разнотравными формами. Здесь произрастают такие виды как одуванчик пурпурный, множество видов манжеток: сетчатонервная, шелковая, шелковистая, кавказская.

Изолированные среди ледниковых полей скалы лишены населения животных. На высокотравных субальпийских лугах насекомые представлены преимущественно двукрылыми, перепончатокрылыми и бабочками. Преобладают саранчовые и жуки с сильным полетом, например скакуны. Чешуекрылых мало. Много пауков. Из грызунов наиболее обычны кустарниковые и прометеевы полевки. Обилие мошек, слепней и комаров создает здесь тяжелые условия для обитания копытных. Поэтому олени, серны и туры, как правило, уходят отсюда либо в лес, либо поднимаются к высоким перевалам. Остаются чаще всего кабаны, косули и медведи, прокладывающие среди высокотравья настоящие коридоры.

Популяция благородного оленя насчитывает примерно 1000 особей. Их ареал охватывает территорию Кавказского заповедника.

Земноводные и пресмыкающиеся единичны, встречаются лишь закавказская и малоазийская лягушки, скальные ящерицы (Darevskia Arribas L.), гадюка и медянка. Птиц мало, преобладают воробьиные. Гнездящиеся птицы представлены видами, сходными по приспособлениям с обитателями северных лугов. Характерны напоминающие жаворонков горные коньки (Anthus L.), а также горные ласточки (Delichon L.), белозобые дрозды (Turdus torquatus L.), краснобрюхие горихвостки (Phoenicurus erythrogastrus L.) и кавказские щуры (Pinicola L.). Повсеместно распространены грызуны - полевки, лесные мыши и кавказские мышовки. Из хищных держатся волки, лисицы, заходят снизу куницы [Абдурахманов, 2008, с. 331-332].

Заключение

Рельеф является преимущественно косвенным абиотическим фактором, поскольку, например, отметка местности (высота) собственно экологическим фактором не является. Но от высоты, от степени крутизны склона горы или холма, ориентации склона относительно стран света, общей структуры рельефа зависит весь комплекс микроклиматических и почвенных факторов.

В заключении можно сделать несколько выводов о рельефе как экологическом факторе:

Характер рельефа, местоположение в нем растения или растительного сообщества оказывают большое влияние на жизнь растения, поскольку рельеф часто обусловливает сочетание прямодействующих факторов и перераспределяет в пространстве те количества тепла, света, влаги, которые являются зональными, поэтому рельеф в жизни растений выступает как косвенно действующий фактор.

Макрорельеф влияет на распределение типов растительности в крупных географических масштабах, примером чему может служить явление вертикальной зональности в горах.

Условия для жизни растений в горах в большой мере определяются экспозицией и крутизной склонов.

Кавказ представляет собой ландшафтный узел, место пересечения двух природных поясов - умеренного с субтропическим. На его территории выражены четыре основных типа высотной поясности: степной умеренного пояса, полупустынный умеренного пояса, полупустынный средиземноморский и влажнолесной средиземноморский. Структура высотной поясности во многих случаях полная - от зональных ландшафтов низин до альпийского пояса с вечными снегами.

Субальпийский пояс - сложный комплекс различных типов растительности. Субальпийский пояс ассоциируется с субальпийскими лугами, но луга - это лишь один из компонентов растительности этого пояса. Здесь есть также заросли низкорослых можжевельников, родореты и субальпийское высокотравье.

На высокотравных субальпийских лугах насекомые представлены преимущественно двукрылыми, перепончатокрылыми и бабочками. Преобладают саранчовые и жуки с сильным полетом, например скакуны.

Список используемой литературы

поясность экспозиция мезорельеф кавказ

Абдурахманов Г.М., Криволуцкий Д.А., Мяло Е.Г., Огуреева Г.Н. Биогеография, М.: Академия, 2008. 480 с.

Акимова Т.А., Кузьмин А.П., Хаскин В.В. Экология. М.: ЮНИТИ-ДАНА, 2001. 343 с.

Березина Н.А., Афанасьева Н.Б Экология растений. М.: Академия, 2009. 400 с.

Горышина Т.К. Экология растений, М.: Высш. школа, 1979. 368 с.

Подобные документы

    Флора и фауна горной природы Джейрахско-Ассинской котловины. Высокогорный и среднегорный рельеф Большого Кавказа. Бассейн реки Терек. Долины рек заповедника Эрзи. Формирование почвенного покрова в пределах альпийского и субальпийского горных поясов.

    презентация , добавлен 10.06.2014

    Свойства воды и ее роль в качестве экологического фактора. Аридные и гумидные условия. Водный баланс организмов. Вода как среда их обитания. Экология водных организмов. Характеристика редких водных животных, занесенных в Красную книгу Краснодарского края.

    курсовая работа , добавлен 18.07.2014

    реферат , добавлен 06.07.2010

    Влияние экологических факторов на состояние экосистем. Особенности воздействия солнечного света. Состав лучистой энергии, воздействие на растения видимого света. Сезонная ритмичность в жизнедеятельности организмов, тепловой режим. Криофилы и термофилы.

    лекция , добавлен 15.11.2009

    Общие правила и закономерности влияния экологических факторов на живые организмы. Классификация экологических факторов. Характеристика абиотических и биотических факторов. Понятие об оптимуме. Закон минимума Либиха. Закон лимитирующих факторов Шелфорда.

    курсовая работа , добавлен 06.01.2015

    Средообразующая роль живых организмов в поддержании необходимого состава для жизни атмосферы, гидросферы и почвы. Составные биосферы: живые организмы и инертная материя. Рациональное использование биологических ресурсов и решение зкологических проблем.

    контрольная работа , добавлен 16.06.2009

    реферат , добавлен 26.10.2017

    Понятие среды обитания. Ее экологические факторы: абиотические, биотические, антропогенные. Закономерности их воздействия на функции живых организмов. Приспособление растений и животных к изменению температуры. Основные пути температурных адаптаций.

    реферат , добавлен 11.03.2015

    Организмы, популяции и виды, их адаптация к среде. Планктонные организмы, нектон, нейстон, плейстон и перифитон, особенности их строения и поведения. Организмы, обитающие сверху поверхностной пленки. Совокупность организмов, обитающих на дне водоемов.

    курсовая работа , добавлен 19.02.2014

    Биосфера как сложнейшая планетарная оболочка жизни, населенная организмами, составляющими в совокупности живое вещество. Роль циркуляции воды в глобальном круговороте веществ. Структура и функции биосферы. Среда и условия существования организмов.

Такие понятия, как «среда обитания» и «условия существования» с точки зрения экологов не являются равнозначными.

Среда обитания — часть природы, которая окружает организм и с которой он непосредственно взаимодействует в течение своего жизненного цикла.

Среда обитания каждого организма сложна и изменчива во времени и пространстве. Она включает множество элементов живой и неживой природы и элементов, привносимых человеком и его хозяйственной деятельностью. В экологии эти элементы среды называются факторами . Все факторы среды по отношению к организму неравнозначны. Одни из них влияют на его жизнедеятельность, а другие для него безразличны. Присутствие одних факторов обязательно и необходимо для жизни организма, а других — не обязательно.

Нейтральные факторы — компоненты среды, которые не влияют на организм и не вызывают у него никакой реакции. Например, для волка в лесу безразлично присутствие белки или дятла, наличие гнилого пня или лишайников на деревьях. Они не оказывают на него непосредственного воздействия.

Экологические факторы — свойства и компоненты среды обитания, которые воздействуют на организм и вызывают у него ответные реакции. Если эти реакции носят приспособительный характер, то они называются адаптациями. Адаптация (от лат. adaptatio — прилаживание, приспособление) — признак или комплекс признаков, обеспечивающих выживание и размножение организмов в конкретной среде обитания. Например, обтекаемая форма тела рыб облегчает их передвижение в плотной водной среде. У некоторых видов растений засушливых мест вода может запасаться в листьях (алоэ) или стеблях (кактус).

В среде обитания экологические факторы различаются по значимости для каждого организма. Например, углекислый газ не важен для жизни животных, но обязателен для жизни растений, а вот без воды не могут существовать ни те, ни другие. Следовательно, для существования организмов любого вида требуются определенные экологические факторы.

Условия существования (жизни) — комплекс экологических факторов, без которых организм не может существовать в данной среде.

Отсутствие в среде обитания хотя бы одного из факторов этого комплекса приводит к гибели организма или угнетению его жизнедеятельности. Так, к условиям существования растительного организма относится наличие воды, определенной температуры, света, углекислого газа, минеральных веществ. Тогда как для животного организма обязательными являются вода, определенная температура, кислород, органические вещества.

Все остальные экологические факторы не являются жизненно важными для организма, хотя и могут влиять на его существование. Их называют второстепенными факторами . Например, для животных углекислый газ и молекулярный азот не являются жизненно необходимыми, а для существования растений не обязательно наличие органических веществ.

Классификация экологических факторов

Экологические факторы многообразны. Они играют различную роль в жизни организмов, имеют неодинаковую природу и специфику действия. И хотя экологические факторы воздействуют на организм как единый комплекс, их классифицируют по разным критериям. Это облегчает изучение закономерностей взаимодействия организмов с окружающей средой.

Разнообразие экологических факторов по природе происхождения позволяет разделить их на три большие группы. В каждой из групп можно выделить несколько подгрупп факторов.

Абиотические факторы — элементы неживой природы, которые прямо или косвенно влияют на организм и вызывают у него ответную реакцию. Их подразделяют на четыре подгруппы:

  1. климатические факторы — все факторы, которые формируют климат в данной среде обитания (свет, газовый состав воздуха, осадки, температура, влажность воздуха, атмосферное давление, скорость ветра и т. д.);
  2. эдафические факторы (от греч. edafos — почва) — свойства почвы, которые разделяются на физические (влажность, комковатость, воздухо- и влагопроницаемость, плотность и т. д.) и химические (кислотность, минеральный состав, содержание органического вещества);
  3. орографические факторы (факторы рельефа) — особенности характера и специфика рельефа местности. К ним относятся: высота над уровнем моря, широта, крутизна (угол наклона местности по отношению к горизонту), экспозиция (положение местности относительно сторон света);
  4. физические факторы — физические явления природы (гравитация, магнитное поле Земли, ионизирующее и электромагнитное излучения и т. д.).

Биотические факторы — элементы живой природы, т. е. живые организмы, влияющие на другой организм и вызывающие у него ответные реакции. Они носят самый разнообразный характер и действуют не только непосредственно, но и косвенно через элементы неорганической природы. Биотические факторы разделяют на две подгруппы:

  1. внутривидовые факторы — влияние оказывает организм того же вида, что и данный организм (например, в лесу высокая береза затеняет маленькую березку, у земноводных при высокой численности крупные головастики выделяют вещества, замедляющие развитие более мелких головастиков, и т. д.);
  2. межвидовые факторы — влияние на данный организм оказывают особи других видов (например, ель угнетает рост травянистых растений под ее кроной, клубеньковые бактерии обеспечивают азотом бобовые растения и т. д.).

В зависимости от того, кем является воздействующий организм, биотические факторы подразделяют на четыре основные группы:

  1. фитогенные (от греч. phyton — растение) факторы — влияние растений на организм;
  2. зоогенные (от греч. zoon — животное) факторы — влияние животных на организм;
  3. микогенные (от греч. mykes — гриб) факторы — влияние грибов на организм;
  4. микробогенные (от греч. micros — малый) факторы — влияние других микроорганизмов (бактерий, протистов) и вирусов на организм.

Антропогенные факторы — разнообразные виды деятельности человека, влияющей как на сами организмы, так и на их местообитания. В зависимости от способа воздействия выделяют две подгруппы антропогенных факторов:

  1. прямые факторы — непосредственное воздействие человека на организмы (скашивание травы, посадка леса, отстрел животных, разведение рыбы);
  2. косвенные факторы — влияние человека на среду обитания организмов самим фактом своего существования и через хозяйственную деятельность. Как биологическое существо человек поглощает кислород и выделяет углекислый газ, изымает пищевые ресурсы. Как социальное существо он оказывает влияние через сельское хозяйство, промышленность, транспорт, бытовую деятельность и др.

В зависимости от последствий воздействия эти подгруппы антропогенных факторов, в свою очередь, подразделяют на факторы положительного и отрицательного влияния. Факторы положительного влияния повышают численность организмов до оптимального уровня или улучшают среду их обитания. Их примерами являются: посадка и подкормка растений, разведение и охрана животных, охрана окружающей среды. Факторы отрицательного влияния снижают численность организмов ниже оптимального уровня или ухудшают среду их обитания. К ним можно отнести вырубку лесов, загрязнение окружающей среды, разрушение местообитаний, прокладку дорог и других коммуникаций.

По природе происхождения косвенные антропогенные факторы можно разделить на:

  1. физические — создаваемые в ходе деятельности человека электромагнитное и радиоактивное излучения, непосредственное воздействие на экосистемы строительной, военной, промышленной и сельскохозяйственной техники в процессе ее использования;
  2. химические — продукты сгорания топлива, пестициды, тяжелые металлы;
  3. биологические — распространяемые в ходе деятельности человека виды организмов, способных внедряться в естественные экосистемы и нарушать тем самым экологическое равновесие;
  4. социальные — рост городов и коммуникаций, межрегиональные конфликты и войны.

Среда обитания — часть природы, с которой организм непосредственно взаимодействует в течение своей жизни. Экологические факторы — свойства и компоненты среды обитания, которые воздействуют на организм и вызывают у него ответные реакции. Экологические факторы по природе происхождения разделяют на: абиотические (климатические, эдафические, орографические, физические), биотические (внутривидовые, межвидовые) и антропогенные (прямые, косвенные) факторы.

Ветер также является одним из факторов, оказывающих влияние на возникновение и распространение пожаров.[ ...]

Факторы климатические: 1) первичные периодические факторы (свет, температура); 2) вторичные периодические факторы (влажность); 3) непериодические факторы (шквальный ветер, значительная ионизация атмосферы, пожары).[ ...]

Ветер, взаимодействуя с другими факторами окружающей среды, может оказывать влияние на развитие растительности, в первую очередь на деревья, растущие на открытых местах. Обычно это приводит к задержке их роста и искривлению с наветренной стороны (рис 4.35).[ ...]

Ветер является важным абиотическим фактором, существенным образом формирующим условия жизни организмов, а также сказывающимся на формирование погоды и климата. Кроме всего прочего ветер является одним из очень перспективных альтернативных источников энергии.[ ...]

Факторы абиотической груп-п ы, подобно биотическим, тоже находятся в определенных взаимодействиях. Например, при отсутствии воды элементы минерального питания, находящиеся в почве, становятся недоступными растениям; высокая концентрация солей в почвенном растворе затрудняет и ограничивает поглощение растением воды; ветер усиливает испарение и, следовательно, потерю растением воды; повышенная интенсивность света связана с повышением температуры среды и самого растения. Подобного рода связей известно много, иногда при ближайшем исследовании они оказываются очень сложными.[ ...]

Ветер - важнейший фактор распространения на большие расстояния влаги, семян, спор, химических примесей и т. п. Он способствует как снижению околоземной концентрации пыле- и газообразных веществ вблизи места их поступления в атмосферу, так и повышению фоновых концентраций в воздушной среде вследствие выбросов далеких источников, включая трансграничный перенос.[ ...]

Ветер является могучим фактором для процесса возобновления пород, имеющих легкие и мелкие семена, начиная от березы, осины (и других видов рода тополей), ильмовых, ольх и кончая липой, сосной и елью, семена которой особенно далеко разносятся по снежному насту.[ ...]

Все факторы экзогенного воздействия проявляются либо на границе атмосферы и литосферы, либо гидросферы и литосферы. В первом случае наиболее разрушительными являются колебания температуры, атмосферные осадки, замерзание воды, ветер, атмосферные разряды и т.п., объединяемые в группу атмосферных агентов. Их совокупность обусловливает выветривание горных пород, их дефляцию. Во втором случае разрушение осуществляется в основном движущимися потоками воды (водная эрозия).[ ...]

Когда ветер дует над поверхностью Земли, то независимо от того, твердая ли это суша или поверхность моря, на ней возникает напряжение (см. гл. 2). Действительно, основные системы течений Мирового океана имеют преимущественно ветровое происхождение. Рассмотрим теперь этот тип вынуждающих сил. Хотя это и удивительно, но оказывается, что он имеет свойства, сходные со свойствами вынуждающих сил топографической природы.[ ...]

Важным фактором изменения модуля и направления скорости ветра по мере удаления от земной поверхности наряду с изменениями турбулентной вязкости является горизонтальная термическая неоднородность в слоях, расположенных на разных уровнях над землей, т.е. 6а-роклинность атмосферы. Вследствие этого формируется термическая составляющая скорости ветра, или, как говорят, термический ветер.[ ...]

Один из факторов засоления - ветер. Он захватывает соленую пыль и переносит ее на большие расстояния в глубь континентов. Подобное явление наблюдается в Приаралье, где ветром усиливается вынос солей и пыли с осушенного дна моря и их перенос на территорию региона.[ ...]

Основными факторами, вызывающими разрушения при прохождении ТЦ, являются ветер, достигающий скорости 100 м/с и больше, волны высотой 20-30 м, штормовые нагоны высотой до 3-7 м и наводнения, возникающие вследствие большого (до 1300 мм/сут) количества осадков. Кроме того, ТЦ вдоль берега с наклонным дном вызывают, так называемые, краевые волны, распространяющиеся параллельно берегу, с периодом 5-7 ч, длиной несколько сот километров и высотой около метра. Комбинация этих явлений и обусловливает разрушительное действие циклонов.[ ...]

Физические факторы внешней среды (климат, погода, высокая и низкая температура, ветер и т.д.) вызывают в первую очередь напряжение системы терморегуляции организма.[ ...]

Физические факторы - это те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура, если она высокая, вызовет ожог, если очень низкая - обморожение. На действие температуры могут повлиять и другие факторы: в воде - течение, на суше - ветер и влажность, и т. п.[ ...]

Физические факторы воздушной среды: движение воздушных масс и атмосферное давление. Движение воздушных масс может быть в виде их пассивного перемещения конвективной природы или в виде ветра - вследствие циклонической деятельности атмосферы Земли. В первом случае обеспечивается расселение спор, пыльцы, семян, микроорганизмов и мелких животных, имеющих анемохоры, очень мелкие размеры, парашутовидные придатки и др. Во втором случае ветер также переносит эти семена и организмы, но на большие расстояния, в новые зоны и т.п. Атмосферное давление оказывает весьма существенное экологическое воздействие в особенности на позвоночных животных, которые из-за этого не могут жить выше 6000 м над уровнем моря.[ ...]

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Так, сильный ветер в зимнее время весьма неблагоприятен для крупных животных, особенно обитающих открыто (лоси), но не действует на более мелких, обычно укрывающихся в норах или под снегом.[ ...]

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Так, например, солевой состав почвы играет важную роль в жизни растений, но безразличен для большинства наземных животных; сильный холодный ветер не действует на животных, укрытых в норах или под снегом, и в то же время неблагоприятен для животных, обитающих открыто. Некоторые свойства среды остаются относительно постоянными на протяжении длительных периодов времени в эволюции видов: сила земного тяготения, солнечная постоянная, солевой состав морской воды и т.д.; физические же факторы - температура, влажность, скорость движения ветра, осадки и др. - значительно изменчивы в пространстве и времени.[ ...]

Абиотические факторы - это температура, свет, влажность, осадки, ветер, атмосферное давление, радиационный фон, химический состав атмосферы, воды, почвы и пр.[ ...]

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы.[ ...]

Кроме тумана, ветер - самый важный фактор, мешающий передвижению на лодке. Безопасность рыболова зависит также от величины водоема. Очень важно знать шкалу силы ветра и какие изменения происходят на данном водоеме в зависимости от той или иной силы и направления ветра.[ ...]

Абиотические факторы - факторы неорганической (неживой) природы. Это свет, температура, влажность, давление и другие климатические и геофизические факторы; природа самой среды - воздушной, водной, почвенной; химический состав среды, концентрации веществ в ней. К абиотическим факторам относят также физические поля (гравитационное, магнитное, электромагнитное), ионизирующую и проникающую радиацию, движение сред (акустические колебания, волны, ветер, течения, приливы), суточные и сезонные изменения в природе. Многие абиотические факторы могут быть охарактеризованы количественно и поддаются объективному измерению.[ ...]

АБИОТИЧЕСКИЕ ФАКТОРЫ СРЕДЫ - это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Среди них главенствующую роль играют климатические (солнечная радиация, световой режим, температура, влажность, атмосферные осадки, ветер, давление и др.); затем идут эдафические (почвенные), важные для обитающих в почве животных; и,наконец, гидрографические, или факторы водной среды. Солнечная радиация является основным источником энергии, определяющим тепловой баланс и термический режим биосферы. Так, суммарная солнечная радиация, поступающая на земную поверхность, в направлении от экватора к полюсам уменьшается примерно в 2,5 раза (от 180-220 до 60-80 ккал/см2 -год). На основе радиационного режима и характера циркуляции атмосферы выделяются на поверхности Земли климатические пояса. Однако солнечная радиация в свою очередь служит и важнейшим экологическим фактором, влияющим на физиологию и морфологию живых организмов. Существование на поверхности нашей планеты крупных зональных типов растительности (тундра, тайга, степи, пустыни, саванны, влажные тропические леса и др.) обусловлено в основном климатическими причинами; причем они тесно связаны с климатической зональностью.[ ...]

Абиотическими факторами среды называется совокупность условий неорганической среды, влияющих на организмы. Абиотические факторы делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические или климатические (температура и влажность воздуха, осадки, снежный покров, барометрическое давление, ветер, лучистая и тепловая энергия Солнца и др.).[ ...]

Классификация факторов среды. Экологические факторы классифицируют по нескольким критериям. Внешние факторы воздействуют на организм, популяцию, экосистему, но не испытывают непосредственного обратного действия: солнечная радиация, атмосферное давление, температура и влажность воздуха, ветер, скорость течения воды, интенсивность заноса питательных веществ или семян, зачатков и особей других видов из других экосистем. В отличие от них внутренние факторы связаны со свойствами самой экосистемы и образуют ее состав: численность, плотность и структура популяций, пища и ее доступность, концентрации веществ, участвующих в экосистемном круговороте, состав и свойства воздушной, водной, почвенной среды.[ ...]

Ко второй группе факторов, влияющих на процесс разбавления, следует отнести характер водотоков и течений, а также причины, вызывающие эти движения: сток, ветер, стратификация температур и плотностей, характеристика ложа водоема, свойства и состав водной среды.[ ...]

Из климатических факторов основное экологическое значение имеют температура, влажность и свет. Вторичные климатические факторы (ветер, атмосферное давление и др.) играют меньшую роль.[ ...]

Движение воздуха - ветер - наибольшей сложностью отличается в нижней половине тропосферы. Здесь на движении воздуха в сильнейшей степени отражается тепловая неоднородность земной поверхности и ветры характеризуются чрезвычайной неустойчивостью в скорости и направлении. В верхней тропосфере и нижней стратосфере фактор подстилающей поверхности снимается, при низком давлении на полюсах повсеместно устанавливается западный перенос, сменяющийся вблизи экватора, в полосе высокого давления, на восточный поток.[ ...]

Среди абиотических факторов довольно часто выделяют климатические (температура, влажность воздуха, ветер и др.) и гидрографические - факторы водной среды (вода, течение, соленость и др.).[ ...]

Как выяснено к настоящему времени, из абиотических факторов большое значение для насекомых имеют температура, влажность и осадки, свет, ветер - основ-, ные элементы климата той или иной местности или микроклимата тех или иных мест обитания.[ ...]

Таким образом, в отличие от принятого вначале предположения об определяющих факторах убеждаемся, что продолжительность развития ветрового течения прямо пропорциональна элементарному расходу воды, обратно пропорциональна квадрату скорости ветра и не зависит от размеров водоема в плане (если ветер одновременно действует над всей его акваторией).[ ...]

Рельеф оказывает сильнейшее влияние на характер изменения значений метеорологических величин и, следовательно, на размах и интенсивность процессов ветровой эрозии. В то же время ветер часто сам выступает мощным фактором рельефообразования. Так, рельеф песчаных пустынь можно с полным основание считать эоловым, т.е. созданным в процессе неревевания песков. Размеры эоловых форм рельефа могуг быть весьма значительными: встречаются песчаные дюны высотой до нескольких сотен метров и длиной несколько километров. На сельскохозяйственных землях рельефообразующая роль ветра сводится к формированию элементов микро- и нанорельефа. Сюда относятся: рябь на поверхности эоловых наносов, отложения наносов в виде кос и бугров за всевозможными препятствиями - стеблями крупных травянистых растений, стволами деревьев, а также эрозионные валы, образовавшиеся на месте полезащитных лесополос частично или полностью засыпанных мелкоземом, снесенным ветром с прилегающих полей. Эрозионные валы встречаются в степных районах Северного Кавказа.[ ...]

Судьбу нефти, попавшей в море, невозможно описать полностью во всех подробностях. Во-первых, углеводородные масла имеют неодинаковый состав и свойства; во-вторых, в море на них действуют разные факторы: ветер различной силы и направлений, волны, температура воздуха и воды; важно и то, как много нефти попало в воду. Как уже говорилось, когда вблизи берега терпит аварию танкер, гибнут морские птицы, страдает прибрежная флора и фауна, пляжи и скалы покрываются трудно удаляемым слоем вязкой нефти. Если же нефть выбрасывается в открытое море, последствия совершенно иные, так как значительные массы нефти могут исчезнуть, не дойдя до берега. Например, при уже упоминавшейся аварии танкера «Торри Кэньон» из 120 тыс. т сырой нефти 60-70 тыс. т были поглощены морем, а 50-70 тыс. т частично уничтожены (благодаря быстро принятым мерам) и только часть оказалась выброшенной на берега Англии и Франции.[ ...]

Внетропические муссоны обусловлены сезонным перемещением субтропических антициклонов и внетропических депрессий, формированием зимой над континентами антициклонов, а летом - депрессий. В районах, где последний фактор определяет возникновение муссонов, зимний муссон будет иметь преобладающее направлен"? с континента на океан, его называют континентальный. Летом ветер имеет противоположное направление - с океана на континент, т.е. наблюдается океанический муссон.[ ...]

В двух озерах Висконсина, воды которых относительно богаты кальцием, насчитывается в три раза больше видов растений и в два раза больше видов животных, чем в двух других аналогичных озерах, бедных кальцием. В Белом море ограничивающим фактором для моллюсков является температура: от нее зависит их благополучие и численность. Но может произойти смена ограничивающего фактора. Так, в 1966 г. ветер нагнал с Карского моря лед, который таял в Белом море. В результате соленость воды в Белом море упала и стала новым ограничивающим фактором.[ ...]

В водных местообитаниях количество кислорода, двуокиси углерода и других атмосферных газов, растворенных в воде и потому доступных организмам, сильно варьирует во времени и в пространстве, чего в наземных местообитаниях не бывает. В озерах и в водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Хотя кислород лучше растворяется в воде, чем азот, даже в самом благоприятном случае в воде содержится значительно меньше кислорода, чем в атмосферном воздухе. Так, если на долю кислорода в воздухе приходится 21% (по объему), т. е. в 1 л воздуха содержится 210 см3 кислорода, то в воде содержание кислорода не превышает 10 см3 на 1 л. Температура воды и количество растворенных солей сильно влияют на способность воды удерживать кислород: растворимость кислорода повышается с понижением температуры и снижается с повышением солености. Запас кислорода в воде пополняется главным образом из двух источников: путем диффузии из воздуха и благодаря фотосинтезу водных растений. Кислород диффундирует в воду очень медленно; диффузии способствует ветер и движение воды; важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода в водной среде сильно меняется в зависимости от времени суток, времени года и местоположения.[ ...]

По сравнению с реками, так как большинство потенциальных мест обитания щук очевидно, стоячие водоемы требуют исследования топографии дна с помощью глубомера. Осенью, с безлистными деревьями на берегах и гниющим тростником зеркало воды выглядит однообразно. Водоемы со стоячей водой зимой становятся неприятными, чему способствуют холодная погода, дождь, сильный ветер или все эти факторы вместе. Необходимо, однако, надеяться, что рыбы по-прежнему там находятся, нужно только их отыскать.[ ...]

Кроме того, у острий, как раз в юм месте, где помещается голова или часть тела больного, возникают сильные электрические поля. Большинство врачей, применяющих и в настоящее время изо дня в день франкли-низацию, совершенно не знает, с какими физическими факторами они имеют дело, и пользуются такими мало что говорящими терминами, как «электрический ветер», «электрический душ» и т. д.[ ...]

Большое значение имеют бури, хотя их действие сугубо локально. Ураганы, да и обычные ветры, способны переносить животных и растения на большие расстояния и, таким образом, изменять на много лет состав лесных сообществ. В недавней работе по лесам Новой Англии (Oliver, Stephens, 1977) сообщается, что в структуре здешней растительности и сейчас заметно действие двух ураганов, пронесшихся в этих местах до 1803 г. Замечено, что в тех областях, где, казалось бы, возможности расселения насекомых по всем направлениям одинаковы, они быстрее расселяются по направлениям преобладающих ветров. В сухих районах ветер является особенно важным лимитирующим фактором для растений, поскольку он увеличивает скорость потери воды путем транспирации и, как уже было сказано, пустынные растения имеют множество специальных приспособлений для смягчения этого лимитирующего эффекта.