Что такое искусственный интеллект? История развития и перспективы. Основные направления исследований

Вопросом искусственного интеллекта начали заниматься ещё в середине ХХ века. Но многие до сих пор представляют покорение галактик, восстание машин и другие картины фантастов, когда слышат про искусственный интеллект. Тем временем технологии искусственного интеллекта уже используются в повседневной жизни. Благодаря этим технологиям машины способны решать всё больше задач, причём быстрее и качественнее. Особенно если для этого нужно обрабатывать большие массивы данных: искусственный интеллект решает такие задачи куда эффективнее, чем человек. Некоторые считают, что такая тенденция многим грозит потерей работы: согласно исследованию Oxford Martin School, до 2033 года технологии позволят полностью автоматизировать 47% рабочих мест. сайт рассказывает о том, что такое искусственный интеллект, как он работает и каковы перспективы его применения в будущем.

Что такое искусственный интеллект

Искусственный интеллект (ИИ) - это наука и технология создания компьютерных алгоритмов и программ, которые функционируют как интеллектуальные системы: обучаются и сохраняют информацию на основе опыта, оценивают и применяют абстрактные концепции, используют полученные знания, чтобы влиять на окружающую среду.

Искусственный интеллект делят на 2 типа: слабый и сильный. Слабый ИИ ещё называют узконаправленным, потому что он может выполнять только задачи в определённых рамках. Такими являются все существующие на сегодня разработки на основе технологии ИИ. Сильный искусственный интеллект сможет решать любые задачи в неограниченном спектре областей. Чтобы представить сильный ИИ, вспомните Джарвиса - помощника Тони Старка в "Железном человеке". Сегодня такой ИИ реализовать невозможно, да и сама идея его создания признана чистой утопией.

Дина Ли специально для сайт

Искусственный интеллект сегодня: нейросети и машинное обучение

Технологию ИИ можно реализовывать по-разному. Один из способов - нейросети. Нейросеть строится по тому же принципу, что и нервные сети в живом организме, отсюда и название. В организме в сеть соединяются нервные клетки - нейроны, они образуют нервную систему. А в искусственной нейросети используются простые процессоры - вычислительные элементы, которые соединяются и взаимодействуют по такой же схеме.

В отличие от обычных алгоритмов нейросети способны обучаться на основе опыта. Нейросети анализируют и выявляют связи между данными на входе и выходе, обобщают данные и формируют решения задач. Чтобы нейросети могли функционировать таким образом, используются методы машинного обучения. Причём в случае с нейросетями такое обучение требует много вычислительных ресурсов.

Чему вы сможете научить нейросеть, зависит от входных данных. Чем больше данных, тем качественнее будет обучение. Можно научить нейросеть отличать одни объекты от других, сравнивать и прогнозировать. Обучение нейросети похоже на обучение детей, когда им показывают картинку и говорят: "Это кошка". В случае с нейросетями они получают очень много таких картинок с объясняющими ярлыками и учатся распознавать отдельные элементы, которые затем смогут совмещать. Входное изображение попадает в некую фильтрующую систему. Фильтры в ней разные по размеру и по сложности элементов, которые могут распознать - у каждого есть свой набор признаков. Изображение многократно фильтруется в этой системе. Когда много элементов распознано, то нейросеть составляет прогноз: с такой-то вероятностью этот объект - человек.

Так появились нейросети, которые прогнозируют курс акций на завтра, распознают написанные от руки цифры индекса на почтовом конверте и определяют на снимке больной орган. Для их обучения использовали числовые данные о курсах на бирже и изображения написанных цифр, больных и здоровых органов.

Проблема заключалась в том, что нейросети часто ошибались, потому что трудно было собрать действительно большие выборки данных для обучения. В 2010 году появилась база изображений ImageNet: 15 миллионов изображений в 22 тысячах категорий. Доступ был открытым: данные мог использовать любой исследователь. В итоге стало возможным качественно обучать ИИ. Нейросети стали более развитыми, доступными и прочно интегрировались в повседневную жизнь.

Искусственный интеллект, с которым мы сталкиваемся в повседневной жизни

Голосовые помощники Siri, Google Assistant и Алиса, алгоритмы для рекомендаций на сайтах - например, Brain, который использует Youtube для рекомендации видео или блок с рекомендуемыми товарами на Amazon, чат-боты, - все они разработаны на основе технологий ИИ.

Платёжная система PayPal использует машинное обучение, чтобы нейросети находили подозрительные транзакции. Это позволяет компании уменьшить количество случаев мошенничества. Российское приложение Prisma использует нейросети для обработки фото.

Инженер компании NVIDIA Роберт Бонд разработал алгоритм, который включал садовые разбрызгиватели воды, когда к нему забредали соседские кошки и портили его сад. Чтобы определить, что это кошка, он использовал систему на основе нейросети Caffe: она определяла кошек по видеосъёмке с камер. Когда камера фиксировала изменение обстановки, то делала 7 фотографий. Фотографии анализировала нейросеть: если на снимках была кошка, то сеть включала разбрызгиватели.

Кроме того, нейросети написали 2 музыкальных альбома, которые можно послушать на Яндекс.Музыке. Один написан на основе песен группы "Гражданская оборона" (исполнителем значится "Нейронная оборона" ), а другой - на основе "Нирваны" (исполнитель - Neurona ).


Дина Ли специально для сайт

В каких областях ещё можно использовать нейросети

Нейросети применяют в медицине, финансах и коммерции, промышленности и обеспечении порядка и безопасности, - везде, где требуется обрабатывать большие объёмы данных, систематизировать и прогнозировать.

В медицине нейросети обучают распознавать опухоли, повреждения тканей и органов после травм, прогнозировать возможные осложнения и течение болезни. Это непросто: нет достаточно большой медицинской базы данных, а нужно добиться высокой точности. Ведь если нейросеть перепутает кошку с собакой, то это не так страшно. А вот если здоровый орган с больным - это будет плохо.

На профессиональной конференции разработчиков высоконагруженных систем HighLoad++ Наталия Ефремова рассказала о нестандартном использовании нейросетей для прогнозирования уровня бедности. Уровень бедности в Африке настолько высокий, что нет возможности просто собрать и проанализировать эти данные. Последние данные собирались в 2005 году. Учёные из Университета Стенфорда сначала обучили нейросеть с помощью базы изображений ImageNet, чтобы она могла распознавать поселения. Затем они собрали много изображений Африки со спутников в дневное и ночное время и загрузили их в нейросеть. Нейросеть оценила, есть ли у населения деньги освещать свои дома ночью, и сделала прогноз их уровня бедности. Прогноз затем сравнили с реальными данными за 2005 год - нейросеть составила довольно точный прогноз.

Почему нейросети ждёт новый виток развития

Вычислительных мощностей становится больше, как и изображений, и других баз данных для обучения нейросетей. Кроме того, оказалось, что нейросети способны на большую эффективность. Когда учёные Стенфорда обучали нейросеть прогнозировать бедность в Африке, они загрузили данные о крышах поселений. Но нейросеть самостоятельно научилась распознавать воду, леса, дороги и другие объекты - без заранее загруженных баз данных и вмешательства учителей.

В мае 2017 года разработчики из Google Brain представили проект AutoML, который самостоятельно проектирует модели машинного обучения. Если просто, то это ИИ, который проанализировал существующие нейросети, выявил эффективные стороны и создал другую нейросеть без вмешательства человека - NASNet . На проверочном наборе изображений NASNet показала точность прогнозирования 82,7%. Этот показатель выше, чем у всех более ранних нейросетей с распознанием изображений.

Отберёт ли ИИ работу у людей

Развитие ИИ неизбежно повлияет на рынок труда. Но этому не стоит удивляться, ведь по сути это всё равно что модернизация и автоматизация. Какие-то профессии исчезнут, и появятся новые, ведь развитие ИИ повлияет и на развитие других областей.

Сейчас есть список профессий, которые, предположительно, искусственный интеллект, нейросети и чат-боты смогут забрать у человека. Например, Google инвестирует в роботов, которые пишут новости без участия человека. Некоторые виды программистов тоже могут остаться в перспективе без работы: речь идёт прежде всего о "кодерах", которые занимаются тем, что собирают готовые блоки, то есть их работу можно свести к алгоритму. То же касается, к примеру, HR-специалистов: нейросети могут охватывать гораздо больше источников информации, чтобы искать кандидатов, систематизировать их по определённым критериям и отправлять им уведомления. Также под угрозой исчезновения находятся операторы call-центров: на их плечи ложится очень много типовой работы, которую можно автоматизировать.

При этом развитие ИИ вызывает опасения. Один из главных изобретателей современности и основатель компаний SpaceX и Tesla Илон Маск назвал искусственный интеллект "самым большим риском, с которым человечество сталкивается как цивилизация". По его словам, компании, устраивая гонку за более передовыми технологиями, могут забыть про те опасности, которые исходят от искусственного интеллекта. Также неоднозначно искусственный интеллект оценивает и Стивен Хокинг. Учёный опасается, что он может привести к деградации человека, сделав его беспомощным перед лицом природы.

В данный момент трудно предсказать точные горизонты, которых сможет достичь ИИ. Но на сегодня мы знаем две важные вещи: некоторую работу нельзя делать без вмешательства человека, и совершенный ИИ, управляющий всем, - это пока фантастика.

Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?

BB скоро будет везде!

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.

Стадии определения.

Для чего используется глубокое обучение и нейросети

Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.

  • — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
  • Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш . Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
  • Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.

Пределы глубокого обучения и нейросетей

Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.

  • Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
  • Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
  • Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
  • Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.

Будущее глубокого обучения, нейросетей и ИИ

Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.

Схемы и пути решения задач скоро заменят очень многое.

Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…

Искусственный интеллект — это не будущее, искусственный интеллект — это настоящее.

Слух, возможность говорить, зрение и прогнозирующая интуиция базируются на использовании обеих сетей (CNN и RNN), а также технологии обработки естественного языка (NLP), которые дополняют друг друга. Подобные технологии используются в Alexa, Siri, Google Now, Cortana и других интеллектуальных голосовых помощниках.

Какие программы используются для создания ИИ?

Существуют десятки фреймворков для разработки ИИ, но в этот список включены только самые выдающиеся.

KERAS

Это библиотека нейронных сетей на основе Python с открытым исходным кодом, которая может работать под управлением Microsoft CNTK (Cognitive Toolkit), Tensorflow и многих других сред.

KERAS лучше всего подходит новичкам.

TENSORFLOW

Tensorflow является наиболее выдающейся средой для разработки искусственного интеллекта, которая использует методы машинного обучения, такие как нейронные сети.

Tensorflow был разработан командой Google Brain, именно этот фреймворк в ответе за автозавершение фраз в текстовое поле поисковой системы Google, а также ИИ приложений Google.

SONNET

Созданная командой Google DeepMind, Sonnet — это библиотека, работающая поверх TensorFlow для построения сложных нейронных сетей глубокого обучения. SONNET лучше всего подходит для исследований и разработок в области искусственного интеллекта и является очень сложной для новичков.

CNTK (Microsoft Cognitive Toolkit)

Ранее известный как CNTK, Microsoft Cognitive Toolkit нацелен обучить алгоритмы мыслить как человеческий мозг. Он обладает скоростью, масштабируемостью, качеством и совместимостью с C ++ и Python. Microsoft использует его для функций AI в Skype, Cortana и Bing.

Microsoft CNTK позволяет пользователям комбинировать популярные модели глубокого обучения, такие как DNN, CNN и RNN.

PYTORCH

Pytorch — это библиотека машинного обучения с открытым исходным кодом для Python, основанная на Torch, которая использует технологии обработки естественного языка (NLP).

DL4J (Deeplearning4j)

Deeplearning4j — это библиотека с открытым исходным кодом для разработки ИИ с использованием методов глубокого обучения. Написана специально для Java и JVM (Java Virtual Machine).

DL4J работает на базе собственной библиотеки числовых вычислений и может работать как на CPU, так и на GPU.

Есть еще много различных сред для разработки искусственного интеллекта. Коротко лишь отметим ONNX, платформу глубокого обучения, которая совместно разработана Facebook и Microsoft, а также перечислим несколько других: H2O, DSSTNE, Theano, DeepDetect, ConvNetJS, ACT-R, Caffe и CaffeOnSpark.

MXNET

Apache MXNET — это программная среда с глубоким обучением для развертывания нейронных сетей. Она имеет масштабируемую модель обучения, которая поддерживает несколько языков программирования для разработки AI: Go, R, Scala, Perl, C ++, Python, Julia, Matlab, JavaScript, и является проектом с открытым исходным кодом.

MXNET используется для развертывания нейронных сетей в службах общего хостинга, таких как AWS и Microsoft Azure.

Где используется искусственный интеллект?

Интеллектуальные системы применяются в разных областях и сферах. Их можно найти в голосовых помощниках, в торговых роботах, военных разработках и так далее. Давайте пробежимся по наиболее важным.

Голосовые помощники

Голосовые помощники, основанные на базе искусственного интеллекта, такие как Siri, Google Now, Alexa, Bixby и Cortana. Они слушают, что говорит пользователь, чтобы преобразовать речь в машиночитаемый вектор, после чего выдается вектор ответа, который произносится голосовым помощником с помощью Natural Language Processing (NLP).

Умные помощники

Autodesk Eva является отличным примером интеллектуального помощника, который использует CNN и NLP для взаимодействия с клиентами в режиме реального времени.

Умный помощник, смоделированный в 3D, может вести диалог с клиентом в режиме реального времени и имитировать соответствующие выражение лица.

Беспилотные автомобили

Беспилотные автомобили используют радар, LIDAR (детектор света и определитель дистанции), GPS и камеру для создания трехмерных моделей приближающихся транспортных средств. Все эти данные объединяются для определения местоположения транспортного средства с очень высокой точностью. Водителем выступает ИИ, который анализирует всю поступающую информацию с датчиков.

Распознавание лиц

Разработка искусственного интеллекта на основе CNN сделала возможным внедрение системы распознавания лиц.

Недавно в Китае начали использовать систему распознавания лиц с помощью камер видеонаблюдения по всему городу, налагая штраф за нарушение правил дорожного движения. Магазины Alibaba в Китае используют распознавание лиц и изображений для выставления счета.

Балансировка нагрузки

Балансировка нагрузки на дороги, транспортные системы, серверы и так далее.

Языковые переводчики

Гугл переводчик является хорошим примером. Он имеет два модуля: кодировщик и декодер. Кодировщик берет входные предложения из речи или текста, а затем переводит их в вектор, который является одинаковым форматом для входных данных со всех языков.

Модуль декодера принимает этот вектор в качестве входных данных, а затем генерирует текст или речь на целевом языке. Распознавание языка происходит с помощью RNN, вывод речи выполняется с помощью NLP.

Поиск и анализ изображений

Поиск и анализ изображений используется для проверки плагиата,
поиска людей, для SEO целей, поиска оскорбительного контента в социальных сетях.

Оптимизация для достижения наилучших результатов

Модули Deepmind были обучены игре в шахматы, Go, Dota 2, Starfield 2.

Эти модули наиграли игр на сотни лет всего за несколько недель обучения, что привело AI к победе над лучшими игроками в мире.

Конечно, это не все сферы применения ИИ. По мере развития технологий и способностей ИИ, сфера применения интеллектуальных систем будет только расширяться.

Если тенденция развития технологий сохранится или ускорится, боюсь, что мы успеем застать эпоху, когда компьютеры станут умнее людей, и все службы, системы и средства будут подключены к централизованной системе под управлением искусственного интеллекта.

Вам может быть интересно:



Понятие искусственный интеллект (ИИ или AI) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). ИИ – это также одно из направлений научной мысли.

Искусственный интеллект — определение

Интеллект – это психическая составляющая человека, которая обладает следующими способностями:

  • приспособленческая;
  • обучаемость посредством накопления опыта и знаний;
  • способность применять знания и навыки для управления окружающей средой.

Интеллект объединяет в себе все способности человека к познанию действительности. При помощи него человек мыслит, запоминает новую информацию, воспринимает окружающую среду и так далее.

Под искусственным интеллектом понимается одно из направлений информационных технологий, которое занимается изучением и разработкой систем (машин), наделенных возможностями человеческого интеллекта: способность к обучению, логическому рассуждению и так далее.

В настоящий момент работа над искусственным интеллектом проводится путем создания новых программ и алгоритмов, решающих задачи так же, как это делает человек.

В связи с тем, что определение ИИ эволюционирует по мере развития этого направления, необходимо упомянуть AI Effect. Под ним понимается эффект, который создает искусственный интеллект, достигнувший некоторого прогресса. Например, если ИИ научился выполнять какие-либо действия, то сразу подключаются критики, которые доказывают, что эти успехи не свидетельствуют о наличии мышления у машины.

Сегодня развитие искусственного интеллекта идет по двум независимым направлениям:

  • нейрокибернетика;
  • логический подход.

Первое направление предусматривает исследование нейронных сетей и эволюционных вычислений с точки зрения биологии. Логический подход подразумевает разработку систем, которые имитируют интеллектуальные процессы высокого уровня: мышление, речь и так далее.

Первые работы в области ИИ начали вести в середине прошлого века. Пионером исследований в этом направлении стал Алан Тьюринг , хотя определенные идеи начали высказывать философы и математики в Средние века. В частности, еще в начале 20-го века была представлена механическое устройство, способное решать шахматные задачи.

Но по-настоящему это направление сформировалось к середине прошлого столетия. Появление работ по ИИ предваряли исследования о природе человека, способах познания окружающего мира, возможностях мыслительного процесса и других сферах. К тому времени появились первые компьютеры и алгоритмы. То есть, был создан фундамент, на котором зародилось новое направление исследований.

В 1950 году Алан Тьюринг опубликовал статью, в которой задавался вопросами о возможностях будущих машин, а также о том, способны ли они обойти человека в плане разумности. Именно этот ученый разработал процедуру, названную потом в его честь: тест Тьюринга.

После опубликования работ английского ученого появились новые исследования в области ИИ. По мнению Тьюринга, мыслящей может быть признана только та машина, которую невозможно при общении отличить от человека. Примерно в то же время, когда появилась статься ученого, зародилась концепция, получившая название Baby Machine. Она предусматривала поступательное развитие ИИ и создание машин, мыслительные процессы которых сначала формируются на уровне ребенка, а затем постепенно улучшаются.

Термин «искусственный интеллект» зародился позднее. В 1952 году группа ученых, включая Тьюринга, собралась в американском университете Дартмунда, чтобы обсудить вопросы, связанные с ИИ. После той встречи началось активное развитие машин с возможностями искусственного интеллекта.

Особую роль в создании новых технологий в области ИИ сыграли военные ведомства, которые активно финансировали это направление исследований. Впоследствии работы в области искусственного интеллекта начали привлекать крупные компании.

Современная жизнь ставит более сложные задачи перед исследователями. Поэтому развитие ИИ ведется в принципиально других условиях, если сравнивать их с тем, что происходило в период зарождения искусственного интеллекта. Процессы глобализации, действия злоумышленников в цифровой сфере, развитие Интернета и другие проблемы – все это ставит перед учеными сложные задачи, решение которых лежит в области ИИ.

Несмотря на успехи, достигнутые в этой сфере в последние годы (например, появление автономной техники), до сих пор не утихают голоса скептиков, которые не верят в создание действительно искусственного интеллекта, а не очень способной программы. Ряд критиков опасается, что активное развитие ИИ вскоре приведет к ситуации, когда машины полностью заменят людей.

Направления исследований

Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной.

Сегодня развитие технологий искусственного интеллекта идет по двум направлениям:

  1. Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления.
  2. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры.

Определяет способность искусственного интеллекта (машины) мыслить так же, как человек. В общем понимании этот подход предусматривает создание ИИ, поведение которого не отличается от людских действий в одинаковых, нормальных ситуациях. По сути, тест Тьюринга предполагает, что машина будет разумной лишь в том случае, если при общении с ней невозможно понять, кто говорит: механизм или живой человек.

Книги в жанре фантастика предлагают другой метод оценки возможностей ИИ. Настоящим искусственный интеллект станет в том случае, если он будет чувствовать и сможет творить. Однако этот подход к определению не выдерживает практического применения. Уже сейчас, например, создаются машины, которые обладают способностью реагировать на изменения окружающей среды (холод, тепло и так далее). При этом они не могут чувствовать так, как это делает человек.

Символьный подход

Успех в решении задач во многом определяется способностью гибко подходить к ситуации. Машины, в отличие от людей, интерпретируют полученные данные единым образом. Поэтому в решении задач принимает участие только человек. Машина проводит операции на основании написанных алгоритмов, которые исключают применение нескольких моделей абстрагирования. Добиться гибкости от программ удается путем увеличения ресурсов, задействованных в ходе решения задач.

Указанные выше недостатки характерны для символьного подхода, применяемого при разработке ИИ. Однако данное направление развития искусственного интеллекта позволяет создавать новые правила в процессе вычисления. А проблемы, возникающие у символьного подхода, способны решить логические методы.

Логический подход

Этот подход предполагает создание моделей, имитирующих процесс рассуждения. В его основе заложены принципы логики.

Данный подход не предусматривает применение жестких алгоритмов, которые приводят к определенному результату.

Агентно-ориентированный подход

Он задействует интеллектуальных агентов. Этот подход предполагает следующее: интеллект представляет собой вычислительную часть, посредством которой достигаются поставленные цели. Машина играет роль интеллектуального агента. Она познает окружающую среду при помощи специальных датчиков, а взаимодействует с ней посредством механических частей.

Агентно-ориентированный подход уделяет основное внимание разработке алгоритмов и методов, которые позволяют машинам сохранять работоспособность в различных ситуациях.

Гибридный подход

Этот подход предусматривает объединение нейронных и символьных моделей, за счет чего достигается решение всех задач, связанных с процессами мышления и вычислений. Например, нейронные сети могут генерировать направление, в котором двигается работа машины. А статическое обучение предоставляет тот базис, посредством которого решаются задачи.

Согласно прогнозам экспертов компании Gartner , к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ.

По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться.

В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты.

Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство.

Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации.

Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов.

В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта.

В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов.

В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств.

Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек.

Технологии ИИ развиваются в следующих направлениях:

  • решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность;
  • разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством.

В настоящий момент исследователи сосредоточены на разработке технологий, которые решают практические задачи. Пока ученые не приблизились к созданию полноценного искусственного разума.

Разработкой технологиями в области ИИ занимаются многие компании. «Яндекс» не один год применяет их в работе поисковика. С 2016 года российская IT-компания занимается исследованиями в области нейронных сетей. Последние изменяют характер работы поисковиков. В частности, нейронные сети сопоставляют введенный пользователем запрос с неким векторным числом, который наиболее полно отражает смысл поставленной задачи. Иными словами, поиск ведется не по слову, а именно по сути информации, запрашиваемой человеком.

В 2016 году «Яндекс» запустил сервис «Дзен» , который анализирует предпочтения пользователей.

У компании Abbyy недавно появилась система Compreno . При помощи нее удается понять на естественном языке написанный текст. На рынок также сравнительно недавно вышли и другие системы, основанные на технологиях искусственного интеллекта:

  1. Findo. Система способна распознавать человеческую речь и занимается поиском информации в различных документах и файлах, используя при этом сложные запросы.
  2. Gamalon. Эта компания представила систему со способностью к самообучению.
  3. Watson. Компьютер компании IBM, использующий в процессе поиска информации большое количество алгоритмов.
  4. ViaVoice. Система распознавания человеческой речи.

Крупные коммерческие компании не обходят стороной достижения в области искусственного интеллекта. Банки активно внедряют подобные технологии в свою деятельность. При помощи систем, основанных на ИИ, они проводят операции на биржах, ведут управление собственностью и выполняют иные операции.

Оборонная промышленность, медицина и другие сферы внедряют технологии распознавания объектов. А компании, занимающие разработкой компьютерных игр, применяют ИИ для создания очередного продукта.

В течение нескольких последних лет группа американских ученых ведет работу над проектом NEIL , в рамках которого исследователи предлагают компьютеру распознать, что изображено на фотографии. Специалисты предполагают, что таким образом они смогут создать систему, способную самообучаться без внешнего вмешательства.

Компания VisionLab представила собственную платформу LUNA , которая может в режиме реального времени распознавать лица, выбирая их из огромного кластера изображений и видеороликов. Данную технологию сегодня применяют крупные банки и сетевые ретейлеры. При помощи LUNA можно сопоставлять предпочтения людей и предлагать им соответствующие товары и услуги.

Над подобными технологиями работает российская компания N-Tech Lab . При этом ее специалисты питаются создать систему распознавания лиц, основанную на нейронных сетях. По последним данным, российская разработка лучше справляется с поставленными задачами, чем человек.

По мнению Стивена Хокинга, развитие технологий искусственного интеллекта в будущем приведет к гибели человечества. Ученый отметил, что люди из-за внедрения ИИ начнут постепенно деградировать. А в условиях естественной эволюции, когда человеку для выживания необходимо постоянно бороться, этот процесс неминуемо приведет к его гибели.

В России положительно рассматривают вопрос внедрения ИИ. Алексей Кудрин однажды заявил о том, что использование таких технологий позволит примерно на 0,3% от ВПП уменьшить расходы на обеспечение работы государственного аппарата. Дмитрий Медведев предрекает исчезновение ряда профессий из-за внедрения ИИ. Однако чиновник подчеркнул, что использование таких технологий приведет к бурному развитию других отраслей.

По данным экспертов Всемирного экономического форума, к началу 2020-х годов в мире из-за автоматизации производства рабочих мест лишаться около 7 миллионов человек. Внедрение ИИ с высокой долей вероятности вызовет трансформацию экономики и исчезновение ряда профессий, связанных с обработкой данных.

Эксперты McKinsey заявляют, что активнее процесс автоматизации производства будет проходить в России, Китае и Индии. В этих странах в ближайшее время до 50% рабочих потеряют свои местах из-за внедрения ИИ. Их место займут компьютеризированные системы и роботы.

По данным McKinsey, искусственный интеллект заменит собой профессии, предусматривающие физический труд и обработку информации: розничная торговля, гостиничный персонал и так далее.

К середине текущего столетия, как полагают эксперты американской компании, число рабочих мест во всем мире сократится примерно на 50%. Места людей займут машины, способные проводить аналогичные операции с той же или более высокой эффективностью. При этом эксперты не исключают варианта, при котором данный прогноз будет реализован раньше указанного срока.

Другие аналитики отмечают вред, который могут нанести роботы. Например, эксперты McKinsey обращают внимание на то, что роботы, в отличие от людей, не платят налоги. В результате из-за снижения объемов поступлений в бюджет государство не сможет поддерживать инфраструктуру на прежнем уровне. Поэтому Билл Гейтс предложил ввести новый налог на роботизированную технику.

Технологии ИИ повышают эффективность работы компаний за счет снижения числа совершаемых ошибок. Кроме того, они позволяют повысить скорость выполнения операций до того уровня, который не может достигнуть человек.

Самый известный способ определить, есть ли у машины интеллект - это тест Тьюринга, предложенный в 1950 году математиком Аланом Тьюрингом. Во время теста человек разговаривает с компьютером и должен определить, кто ведёт беседу - машина или человек. Если машина способна имитировать разговор - значит, она обладает интеллектом. Сегодня тест Тьюринга уже : прошлым летом его прошёл чат-бот Eugene Goostman, да и тест постоянно критикуют. Look At Me собрал восемь других способов определить, есть ли у машины интеллект.

Тест Лавлейс 2.0


Этот тест назван в честь Ады Лавлейс, математика из XIX века, которую считают первым в истории программистом. Он призван определить наличие интеллекта у машины через способность её к творчеству. Первоначально тест предложили в 2001 году: тогда машина должна была создать произведение искусства, которое разработчик машины принял бы за созданное человеком. Так как чётких критериев успеха нет, тест получается слишком неточным.

В прошлом году профессор Марк Рейдел из Технологического института Джорджии обновил тест, чтобы сделать его менее субъективным. Теперь машина должна создать произведение в определённом жанре и в определённых творческих рамках, заданных человеком-судьёй. Проще говоря, это должно быть произведение искусства в конкретном стиле. Скажем, судья может попросить машину нарисовать маньеристскую картину в духе Пармиджанино или написать джазовое произведение в духе Майлза Дэвиса. В отличие от оригинального теста, машины работают в заданных рамках, и поэтому судьи могут оценивать результат более объективно.

Испытание IKEA


Машине показывают картинку и спрашивают, например, где на ней находится чашка, - и дают несколько вариантов ответа. Все варианты ответов правильные (на столе, на подстилке, перед стулом, слева от лампы) , но некоторые из них могут быть более человеческими, чем другие (скажем, из всего перечисленного человек скорее ответит «на столе») . Кажется, что это простое задание, но на самом деле способность описать, где находится объект по отношению к другим объектам - важнейший элемент человеческого разума. Здесь играют роль множество нюансов и субъективных суждений, от размера объектов до их роли в конкретной ситуации - в общем, контекст. Люди проделывают это интуитивно, а машины сталкиваются с проблемами.

Схемы Винограда


Чат-боты, проходящие тест Тьюринга, умело обманывают судей и заставляют поверить, что они - люди. По словам Гектора Левеска, профессора информатики в Университете Торонто, такой тест лишь показывает, как легко обмануть человека, особенно в короткой текстовой переписке. Но из теста Тьюринга невозможно понять, есть ли у машины интеллект или хотя бы понимание языка.