Если одна плоскость перпендикулярна другой то. Стереометрия

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.:

Подробнее во вложении

Скачать:


Предварительный просмотр:

Урок геометрии в 10 классе.

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.: «Нужно всеми средствами обучать искусству доказывать, не забывая при этом и об искусстве догадываться».

1. Оргмомент.

2. Проверка домашнего задания.

1)Ученик с моделью двугранного угла рассказывает, как образуется его линейный угол; дает определение градусной меры двугранного угла.

2) Задача №1. (Слайд 2) – по рисунку.

3) Задача №2. (Слайд 3) – по рисунку.

К этим задачам вернемся позже перед доказательством признака.

3. Актуализация знаний.

1) Рассказ ученика о пересекающихся плоскостях (используется модель).

2) Определение перпендикулярных плоскостей (использует модель), примеры.

Вернемся к домашним задачам. Было установлено, что в обоих случаях двугранные углы равны 90°, т.е. являются прямыми. Посмотрим, какие символы нужно вставить вместо точек и сделаем вывод о взаимном расположении плоскостей (слайд 4).

(AFC) FO (ADC)

(AFC) (ADC).

Выясним, можно ли без нахождения двугранного угла сделать вывод о перпендикулярности плоскостей?

Обратите внимание на связь (слайд 5):

(DCC₁) DD₁ (ABC) (DCC₁) (ABC) и

(AFC) FO (ADC) (AFC) (ADC)

Формулирование предположения учащимися.

4. Изучение нового материала.

1). Сообщение темы урока: «Признак перпендикулярности двух плоскостей».

2). Формулировка теоремы (учебник): «Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны» ; показ на модели.

3). Доказательство проводится по заранее заготовленному чертежу (рис.62).

Дано: α, β – плоскости; α АВ β; АВ ∩ β = А

Доказать: α β.

Доказательство: 1) α ∩ β = АС

2) АВ АС (?)

3) Построим АD β; АD АС

4) L BAD - ……….. , L BAD = …. ° (?)

5) L (α, β) = 90°, т.е. α β.

5. Первичное закрепление (ПЗ).

1). Решение задачи 1 на готовом чертеже (слайд 6).

Дано: DА

Доказать: (DАС)

2). Решение задачи 2 на готовом чертеже + у каждого заготовленный вырезанный ромб (слайд 7).

Дано: АВСД – ромб;

Перегибаем по диагонали:

ВО

Докажи: (АВС)

3). Задача 3. «Слепой» текст на печатной основе (слайды 8-9).

Дано: рисунок; двугранный угол ВАСД – прямой.

Найди: ВД

Самостоятельно. Проверка.

6. Итоги урока. Информация о домашнем задании.

Определение. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, и не принадлежащими одной плоскости.

Определение. Градусной мерой двугранного угла называется градусная мера любого из его линейных углов.

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 90 o .

Признак перпендикулярности двух плоскостей.

Свойства.

  1. В прямоугольном параллелепипеде все шесть граней представляют собой прямоугольники.
  2. Все двугранные углы прямоугольного параллелепипеда являются прямыми
  3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Задачи и тесты по теме "Тема 7. "Двугранный угол. Перпендикулярность плоскостей"."

  • Двугранный угол. Перпендикулярность плоскостей
  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

  • Перпендикуляр и наклонные. Угол между прямой и плоскостью - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 2 Заданий: 10 Тестов: 1

  • Параллельность плоскостей - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 8 Тестов: 1

  • Перпендикулярные прямые - Начальные геометрические сведения 7 класс

    Уроков: 1 Заданий: 17 Тестов: 1

Материал темы обобщает и систематизирует известные Вам из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.

Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.

Определение. Две плоскости называются перпендикулярными, если угол между ними равен 90°. Приведем без доказательства теоремы стереометрии, полезные для решения последующих метрических задач.

1. Признак перпендикулярности двух плоскостей: если плоскость проходит через перпендикуляр к другой плоскости, то она перпендикулярна этой плоскости.

2. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то

прямая их пересечения перпендикулярна третьей плоскости.

3. Для наклонной прямой, не являющейся перпендикуляром к плоскости, имеет место утверждение: через наклонную проходит единственная плоскость, перпендикулярная данной плоскости.

Последнее утверждение позволяет предложить следующий алгоритм построения плоскости, проходящей через наклонную АВ и перпендикулярную заданной плоскости Σ:

1) на АВ выбирается произвольная точка Е;

2) строится прямая t таким образом, что t " Е, t ^ h , t ^ f , где h Ì Σ, f Ì Σ

(рис. 7.10), т.е. t ^ Σ.

Плоскость (АВ,t) будет единственной плоскостью, перпендикулярной плоскости Σ. Заметим, что через прямую t ^ Σ проходит не одна плоскость, перпендикулярная Σ.

Задача. Дана плоскость Σ(CD, MN), где CD // MN и прямая АВ (рис. 7.11).

Построить на КЧ плоскость, проходящую через АВ и перпендикулярную плоскости Σ.

Алгоритм проекционного решения задачи:

1) строятся линии уровня h(h 1 ,h 2) и f(f 1 ,f 2) в плоскости Σ, при этом h 2 // х, f 1 // х;

2) строятся проекции t 1 и t 2 прямой t таким образом, что t 2 " E 2 , t 2 ^ f 2 ; t 1 " E 1 , t 1 ^ h 1 , где Е Î АВ – произвольная точка. Плоскость (АВ, t) – решение задачи.

Задача. Даны плоскости Σ(АВ, DC) и Δ(KL, PT), где

AB Ç DC, KL // PT, а также точка Е. Построить плоскость, проходящую через точку Е и перпендикулярную обеим плоскостям Σ и Δ (рис. 9.9).

Одно из возможных решений данной задачи состоит в следующем. Вначале строится линия пересечения заданных плоскостей t = Σ Ç Δ. Затем, на основании приведенных теорем стереометрии, строится плоскость, проходящая через точку Е и перпендикулярная линии t. Будучи единственной, эта плоскость представляет собой решение задачи.

Возможен другой алгоритм решения данной задачи (см. рис. 9.8):

1) из данной точки Е опускается перпендикуляр а на плоскость Σ;

2) из точки Е опускает перпендикуляр b на плоскость Δ.

Плоскость (a, b), где a Ç b = E, есть решение задачи. Рассмотрим реализацию этого алгоритма на КЧ (см. рис. 9.9).

1. В плоскости Σ построим линии уровня h 1 (h 1 1 , h 1 2) и f 1 (f 1 1 , f 1 2) . При этом



h 1 2 // x; f 1 1 // x.

2. В плоскости Δ построим линии уровня h 2 (h 2 1 , h 2 2) и f 2 (f 2 1 , f 2 2) . При этом

h 2 2 // х; f 2 1 //х.

3. Из точки Е опускаются два перпендикуляра: а ^ Σ, b ^ Δ. При этом

а 2 ^ f 1 2 , а 1 ^h 1 1 ; b 2 ^ f 2 2 , b 1 ^ h 2 1 .

Две прямые а и b, пересекающиеся в точке Е, определяют искомую плоскость, т.е. плоскость, перпендикулярную заданным плоскостям Σ и Δ.

Перпендикулярность плоскостей Определение. Две плоскости называются перпендикулярными, если линейный угол при ребре двугранного угла между этими плоскостями - прямой.
Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Доказательство. Пусть a и ? - две пересекающиеся плоскости, с - прямая их пересечения и а - прямая перпендикулярная плоскости ? и лежащая в плоскости a . А - точка пересечения прямых a и с. В плоскости ? из точки А восстановим перпендикуляр, и пусть это будет прямая b . Прямая а перпендикулярна плоскости ? , а значит она перпендикулярна и любой прямой в этой плоскости, то есть прямые b и с перпендикулярны. Угол между прямыми а и Ь - линейный плоскостями a и ? и равен он 90°, так как прямая а перпендикулярна прямой b (подоказанному).Поопределениюплоскости a и ? перпендикулярны.

Теорема 1 . Еслииз точки,принадлежащейодной из двух перпендикулярных плоскостей,провести перпендикуляр к другой плоскости, то это перпендикуляр полностью лежит в первой плоскости.
Доказательство. Пусть a и ? - перпендикулярные плоскости и с - прямая их пересечения, А - точка лежащаявплоскостиa и не принадлежащая прямой с. Пустьперпендикуляр к плоскости ? проведенный из точки А , не лежит в плоскости a , тогда точка С – основание этого перпендикуляра лежит в плоскости ? и не принадлежит прямой с. Из точки А опустим перпендикуляр АВ напрямую с. Прямая АВ перпендикулярна плоскости (использую теорему 2). Через прямую АВ и точку С проведем плоскость ? (прямая и точка определяют плоскость, причем только одну). Мы видим, что в плоскости ? из одной точки А на прямуюВС проведено два перпендикуляра, чего быть не может, значит прямая АС совпадает с прямой АВ, а прямая АВ в свою очередь полностью лежит в плоскости a .

Теорема 2 . Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости.
Доказательство. Пусть a и ? - две перпендикулярные плоскости, с - прямая их пересечения и а - прямая перпендикулярная прямой с и лежащая в плоскости a . А - точка пересечения прямых а и с. В плоскости ? из точки А восстановим перпендикуляр, и пусть это будет прямая b . Угол между прямыми а и b - линейный угол при ребре двугранного угла между плоскостями a и ? и равен он 90°, так как плоскости a и ? перпендикулярны. Прямая а перпендикулярна прямой b (по доказанному) и прямой с по условию. Значит прямая а перпендикулярна плоскости? (

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Рассмотрим две пересекающиеся плоскости. При пересечении они образуют четыре двугранных угла с общим ребром.

Вспомним, что из себя представляет двугранный угол.

В реальности мы встречаемся с предметами, которые имеют форму двугранного угла: например, приоткрытая дверь или полураскрытая папка.

При пересечении двух плоскостей альфа и бета получим четыре двугранных угла. Пусть один из двугранных углов равен (фи), тогда второй равен (1800 -), третий, четвертый (1800-).

Рассмотрим случай, когда один из двугранных углов равен 900.

Тогда, все двугранные углы в этом случае равны по 900.

Введем определение перпендикулярных плоскостей:

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

Угол между плоскостями сигма и эпсилон равен 90 градусов, значит плоскости перпендикулярны

Приведем примеры перпендикулярных плоскостей.

Стена и потолок.

Боковая стенка и крышка стола.

Сформулируем признак перпендикулярности двух плоскостей:

ТЕОРЕМА: Если одна их двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Докажем этот признак.

По условию известно что прямая АМ лежит в плоскости α, прямая АМ перпендикулярна плоскости β,

Доказать: плоскости α и β перпендикулярны.

Доказательство:

1) Плоскости α и β пересекаются по прямой АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) Проведем в плоскости β прямую AТ перпендикулярную AР.

Получим угол ТAМ - линейный угол двугранного угла. Но угол ТAМ = 90°, так как МА β. Значит, α β.

Что и требовалось доказать.

Из признака перпендикулярности двух плоскостей имеем важное следствие:

СЛЕДСТВИЕ: Плоскость, перпендикулярная к прямой, по которой пересекаются две плоскости, перпендикулярна к каждой из этих плоскостей.

То есть: если α∩β=с и γ с, то γ α и γ β.

Докажем это следствие: если плоскость гамма перпендикулрна к прямой с то по признаку параллельностидвух плоскостей гамма перпендикулярна к альфа. Аналогично и гамма перпендикулярна бета

Указанное следствие переформулируем для двугранного угла:

Плоскость, проходящая через линейный угол двугранного угла перпендикулярна ребру и граням этого двугранного угла. Другими словами, если мы построили линейный угол двугранного угла, то проходящая через него плоскость перпендикулярна ребру и граням этого двугранного угла.

Дано: ΔАВС, С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC = 60°, АС = 5 см, АВ = 13 см.

Найти: расстояние от точки В до плоскости α.

1) Построим ВК α. Тогда КС - проекция ВС на эту плоскость.

2) ВС АС (по условию), значит, по теореме о трех перпендикулярах (ТТП), КС АС. Следовательно, ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника АВС. То есть ВСК = 60°.

3) Из ΔВСА по теореме Пифагора:

Ответ ВК равно 6 корней из трех см

Практическое использование (прикладной характер) перпендикулярности двух плоскостей.