Что такое диссоциация на ионы. Электролитическая диссоциация: теория и основные положения

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

ОПРЕДЕЛЕНИЕ

Процесс распада электролитов на ионы в водных растворах и расплавах под действием электрического тока называется электролитической диссоциацией .

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА ↔ К + + А −

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H +), а точнее – гидроксония (H 3 O +), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO 3 ↔ H + + NO 3 −

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH −), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH ↔ Na + + OH −

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH 4 +) и анионы кислотных остатков.

CaCl 2 ↔ Ca 2+ + 2Cl −

Многоосновные кислоты и основания диссоциируют ступенчато.

H 2 SO 4 ↔ H + + HSO 4 − (I ступень)

HSO 4 − ↔ H + + SO 4 2- (II ступень)

Ca(OH) 2 ↔ + + OH − (I ступень)

+ ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl (молекулярная форма)

Ba 2+ + 2 Cl − + 2 Na + + SO 4 2- = BaSO 4 ↓ + 2 Na + + 2 Cl − (полная ионная форма)

Ba 2+ + SO 4 2- = BaSO 4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H 2 O ↔ H + + OH −

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = K W

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН).


Правила составления уравнений электролитической диссоциации веществ

Процесс разрушения или распада электролита на ионы называется электролитической диссоциацией. Составные части распавшихся молекул или кристаллов представляют собой частицы, имеющие заряд. Их называют ионы.

Ионы бывают отрицательные и положительные. Положительные ионы называются катионами, отрицательные — анионами.

Растворы веществ, молекулы или кристаллы которых способны распадаться на ИОНЫ (диссоциировать), могут проводить электрический ток. Именно поэтому их называют электролитами. Часто процесс электролитической диссоциации называют просто: диссоциация.

Процесс растворения вещества отличается от диссоциации тем, что при растворении частицы вещества равномерно распределяются между молекулами растворителя (воды) по всему объему раствора, а в процессе диссоциации частицы вещества (кристаллы или молекулы) распадаются на составные части.

Поэтому при хорошей растворимости вещество не всегда хорошо диссоциирует.

Существуют вещества, молекулы или кристаллы которых хорошо распадаются на ионы. Их называют сильными электролитами.

Сильные электролиты:

Диссоциация сильных электролитов происходит необратимо

Существуют вещества, молекулы или кристаллы которых плохо распадаются на ионы. Их называют слабыми электролитами.

Слабые электролиты:

Диссоциация слабых электролитов происходит обратимо, т. е. ионы, образовавшиеся при распаде молекулы, соединяясь снова, образуют исходную молекулу. Обратимость реакции показывают разнонаправленными стрелками: ↔для слабых электролитов обратная реакция (ассоциация) преобладает над распадом молекул на ионы.

1. Диссоциация сильных электролитов

При диссоциации кислот их молекулы распадаются всегда на положительно заряженные ноны водорода Н и отрицательно заряженные ионы кислотных остатков.

Рассмотрим уравнение диссоциации кислоты сильного электролита. (видео урок)

При диссоциации оснований их молекулы распадаются всегда на положительно заряженные ноны металла и отрицательно заряженныегидроксид-ионы (ОН -).

2. Рассмотрим уравнение диссоциации основания — сильного электролита.(видео урок)

3. При диссоциации солей их молекуль распадаются всегда на по ложительно заряженные ионы металла и отрицательно заряжен ные ноны кислотньтх остатков.

Рассмотрим уравнение диссоциации соли — сильного электролита. (видео урок)

4. Составление уравнения диссоциации соли, в которой кислотный остаток состоит из одного элемента (хлорид (С1), сульфиды (S ), отличается от тех уравнений, в которых молекулы солей имеют в кислотном остатке два элемента. (видео урок)

5. Диссоциация слабых электролитов (видео урок)

диссоциация многоосновных кислот слабых электролитов на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется один ион водорода Н и отрицательно заряженные ионы кислотных остатков. Рассмотрим уравнение диссоциации кислоты— слабого электролита (Н 2 СО 3)

6 Вторая стадия диссоциации HCO 3 - ↔ H + + CO 3 -

Число стадий диссоциации кислоты — слабого электролита равно числу атомов водорода Н в его молекуле.

Диссоциация слабых электролитов многокислотных оснований на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется 1 гидроксид-ион (ОН-).(видео урок)

Такие основания, как правило, содержат несколько групп ОН. Рассмотрим уравнение диссоциации основания — слабого электролита Mg (OH ) 2

Первая стадия диссоциации

Mg (OH ) 2 ↔ MgOH + + OH -

Число стадий диссоциации основания — слабого электролита равно числу групп ОН в его молекуле. (видео урок)

Уравнения диссоциации солей слабых электролитов на ионы записывают в одну стадию. При этом образуются положительно заряженные ИОНЫ металла и отрицательно заряженные ИОНЫ кислотного остатка. Рассмотрим уравнение диссоциации соли — слабого электролита Са 3 (РО 4) 2

Са 3 (РО 4) 2 ↔ 3Са 2+ + 2РО 4 3- (видео урок)

Реакции на опыты (видео урок)

1. Реакции ионного обмена, идущие с выделением газа

Na 2 CO 3 + 2HCl = CO 2 + H 2 O + 2NaCl

2. Реакции ионного обмена, идущие с образованием ярко-окрашенных солей

FeCl 3 + 3KNCS= Fe(NCS) 3 + 3KCl

BaCl 2 + K 2 CrO 4 = BaCrO 4 ↓+ 2KCl

NiSO 4 + 2NaOH = Ni(OH) 2 ↓ + Na 2 SO 4

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

3. Реакция нейтрализации

NaOH + HCl = NaCl + H 2 O

4. Изменение диссоциации электролитов при различных температурах

Все вещества по способности в растворе или в расплавленном состоянии проводить электрический ток можно подразделить на две группы: электролиты и неэлектролиты.

Электролитами называются вещества, растворы или расплавы которых проводят электрический ток. К электролитам относятся кислоты, основания и соли.

Неэлектролитами называются вещества, растворы или расплавы которых электрический ток не проводят. Например, многие органические вещества.

Способность электролитов (проводников II рода) проводить электрический ток принципиально отличается от электропроводности металлов (проводников I рода): электропроводность металлов обусловлена движением электронов, а электропроводность электролитов связана с движением ионов.

Было обнаружено, что в растворах кислот, оснований и солей экспериментально найденные значения p, tкрист., tкип., pосм, больше теоретически рассчитанных для того же раствора по его молярной концентрации в i раз (i - изотонический коэффициент). Причем число частиц в растворе NaCl увеличилось почти в 2 раза, а в растворе СаCl2 - в 3 раза.

Для объяснения особенностей поведения электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория, получившая название теории электролитической диссоциации . Сущность теории состоит в следующем:

  • 1. Электролиты при растворении в воде распадаются (диссоциируют) на заряженные частицы (ионы) - положительно заряженные катионы (Na+, K+, Ca2+, H+) и отрицательно заряженные анионы (Cl-, SO42-, CO32-, OH-). Свойства ионов совершенно иные, чем у образовавших их атомов. Распад нейтрального вещества на ионы в результате химического взаимодействия с растворителем называют электролитической диссоциацией.
  • 2. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы - к положительно заряженному электроду (аноду).
  • 3. Диссоциация - процесс обратимый и равновесный. Это означает, что параллельно с распадом молекул на ионы (диссоциация), идет процесс соединения ионов в молекулы (ассоциация): КА К+ + А-.
  • 4. В растворе ионы находятся в гидратированном состоянии.

Для количественной оценки электролитической диссоциации используется понятие степени электролитической диссоциации () - отношение числа молекул, распавшихся на ионы, к общему числу растворенных молекул. Степень диссоциации определяется опытным путем и выражается в долях или процентах. Степень электролитической диссоциации зависит от природы растворителя и растворяемого вещества, температуры и концентрации раствора:

  • 1. Чем более полярен растворитель, тем выше степень диссоциации в нем электролита.
  • 2. Диссоциации подвергаются вещества с ионной и ковалентной полярной связью.
  • 3. Повышение температуры, увеличивает диссоциацию слабых электролитов.
  • 4. При уменьшении концентрации электролита (при разбавлении) степень диссоциации увеличивается.

В зависимости от величины степени диссоциация условно электролиты (при концентрации их растворов 0,1 М) делят на:

По виду образующихся при диссоциации ионов все электролиты можно разделить на кислоты, основания, соли.

Кислоты - электролиты, диссоциирующие с образованием только катионов H+ и кислотного остатка (Cl- - хлорид, NO3- - нитрат, SO42- - сульфат, HCO3 гидрокарбонат, CO32 карбонат). Например: НСl Н++Сl-, H2SO4 2Н++SO42- .

Наличие в растворах кислот иона водорода, точнее, гидратированного иона Н3O+, обусловливает общие свойства кислот (кислый вкус, действие на индикаторы, взаимодействие со щелочами, взаимодействие с металлами с выделением водорода и пр.).

В многоосновных кислотах диссоциация происходит ступенчато, причем каждая ступень характеризуется своей величиной степени диссоциации. Так, ортофосфорная кислота диссоциирует по трем ступеням:

I ступень

H3РO4 Н+ + H2РO4-

II ступень

H2РO4- Н+ + HРO42-

III ступень

HРO42- Н+ + РO43-

Причем 3<2<1, т.е. распад электролита на ионы протекает, в основном, по первой ступени и в растворе ортофосфорной кислоты будут находиться преимущественно ионы Н+ и H2РO4-. Причины этого в том, что ионы водорода значительно сильнее притягиваются к трехзарядному иону РO43- и двухзарядному иону HРO42-, чем к однозарядному H2РO4-. Кроме того, на 2-ой и 3-ей ступенях имеет место смещение равновесия в сторону исходной формы по принципу Ле-Шателье за счет накапливающихся ионов водорода.

Основания - электролиты, диссоциирующие с образованием в качестве анионов только гидроксид-ионы (OH-). После отрыва OH- остаются катионы: Na+, Cа2+, NH4+. Например: NaOH Na+ + ОН-, Са(ОН)2 Са2+ + 2 OН-.

Общие свойства оснований (мыльность на ощупь, действие на индикатор, взаимодействие с кислотами и пр.) определяются наличием в растворах оснований гидроксо-группы ОН-.

Для многокислотных оснований характерна ступенчатая диссоциация:

I ступень

Ва(ОН)2 Ва(ОН)+ + OН-

II ступень

Ва(ОН)+ Ва2+ + OН-

Диссоциация амфотерных гидроксидов протекает как по типу основания, так и по типу кислоты. Так, диссоциация гидроксида цинка может протекать по следующим направлениям (при этом равновесие сдвигается в зависимости от среды по принципу Ле-Шателье):

Соли - это электролиты, диссоциирующие на катионы металла (или заменяющих его групп) и анионы кислотного остатка.

Средние соли диссоциируют полностью: CuSO4 Cu2+ + SO42-. В отличие от средних солей, кислые и основные соли диссоциируют ступенчато:

I ступень

NaНСО3 Na+ + НСО3-

Сu(ОН)Cl Сu(ОН)+ + Cl-

II ступень

НСО3- Н+ + СО32-

Сu(ОН)+ Сu2+ + OН-,

причем степень диссоциации солей по второй ступени очень мала.

Реакции обмена в растворах электролитов - это реакции между ионами. Необходимым условием протекания реакций обмена в растворах электролитов является образование слабодиссоциирующих соединений или соединений, выделяющихся из раствора в виде осадка или газа.

При написании уравнений реакций в ионно-молекулярном виде слабодиссоциирующие, газообразные и труднорастворимые соединения записывают в виде молекул , а растворимые сильные электролиты - в виде ионов. При написании ионных уравнений следует обязательно руководствоваться таблицей растворимости кислот, оснований и солей в воде (Приложение А).

Рассмотрим методику написания ионных уравнений на примерах.

Пример 1. Напишите в ионно-молекулярной форме уравнение реакции:

ВаСl2 + K2SО4 = ВаSО4 + 2KСl

Решение: Соли являются сильными электролитами и практически полностью диссоциируют на ионы. Так как ВаSО4 - практически нерастворимое соединение (см. таблицу приложения А), основная часть сульфата бария будет находиться в недиссоциированном виде, поэтому это вещество запишем в виде молекул, а остальные соли, являющиеся растворимыми, в виде ионов:

Ва2+ + 2Сl- + 2K+ + SО42- = ВаSО4 + 2K+ + 2Сl-

Как видно из полученного полного ионно-молекулярного уравнения, ионы K+ и Сl- не взаимодействуют, поэтому, исключив их, получим краткое ионно-молекулярное уравнение:

Ва2+ + SО42- = ВаSО4 ,

Стрелка показывает, что образующееся вещество выпадает в осадок.

Ионными уравнениями могут быть изображены любые реакции, протекающие в растворах между электролитами. Причем суть любой химической реакции отображает именно краткое ионно-молекулярное уравнение. На основании ионно-молекулярного уравнения можно легко написать молекулярное.

Пример 2. Подберите молекулярное уравнение к следующему ионно-молекулярному уравнению: 2Н+ + S2- = Н2S.

Решение: Ионы водорода образуются при диссоциации любой сильной кислоты, например НСl. К ионам водорода в кратком ионном уравнении необходимо добавить два иона хлора. К сульфид-ионам следует добавить катионы (например, 2K+), образующие растворимый, хорошо диссоциирующий электролит. Затем такие же ионы нужно написать в правой части. Тогда полное ионно-молекулярное и молекулярное уравнения будут иметь вид:

  • 2Н+ + 2Сl- + 2K+ + S2- = Н2S + 2K+ + 2Сl-
  • 2 НСl + K2S = Н2S + 2 KСl-

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

зависимости от механизма прохождения тока через проводники различают проводники первого и второго рода. К проводникам 1-го рода, обладающим электронной проводимостью, относят металлы, оксиды, сульфиды, уголь. Проводники 2-го рода - это вещества, распадающиеся при определенных условиях на ионы: они обладают ионной проводимостью. Вещества, растворы или расплавы которых проводят электрический ток, называются электролитами. Вещества, растворы или расплавы которых не проводят электрического тока, называются неэлектролитами; К электролитам относят кислоты, основания и почти все соли, к неэлектролитам - большинство органических соединений. В растворе или расплаве электролиты распадаются на ионы. Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией. Диссоциация в растворах протекает под действием полярных молекул растворителя. В расплавах диссоциация протекает вследствие нагревания вещества. Теория электролитической диссоциации была разработана знаменитым шведским химиком С. Аррениусом (1887 г.). Основные положения современной теории электролитической диссоциации: |Т] При растворении в воде электролиты распадаются (диссоциируют) на положительные и отрицательные частицы (ионы), которые находятся в растворе в хаотическом движении. 1 К°> " Для второй ступени диссоциации HS" <± Н+ + S2" значение константы диссоциации KD равно: n2s К D Для полной диссоциации H9S 7=* 2Н+ + S2" н,s значение константы диссоциации KDr равно произведению констант диссоциации по первой и второй ступени: KH2S V^i® . V D Dl Da . При прочих равных условиях KDj > >... KD . » тогда как отрыв протона от нейтральной молекулы всегда протекает легче, чем от отрицательно заряженных ионов. Важным процессом диссоциации является диссоциация воды: Н20 т± Н+ + ОН". Константа для этого процесса при 25 °С равна: н3о [Н*][ОН~] К° " [Н20] " Поскольку концентрация недиссоциированных молекул воды может быть принята равной общему числу моль воды в 1 л, т. е. [Н20] = 1000/18 - 55,56 моль, то [Н+] [ОН"] -= 10~14. Отсюда и произведение концентрации ионов Н+ и ОН" при данной температуре постоянно. Это произведение называют ионным произведением воды (Kj^q) Поскольку в воде концентрация гидратированных ионов водорода и гидроксид ионов равны, то [Н+] = [ОН"] -= 10~7 моль/л. Раствор с равными концентрациями ионов называют нейтральным; раствор, в котором [Н+] > [ОН~] - кислым; раствор, в котором [Н+] < [ОН"] - щелочным (основным). На практике использование концентрации ионов водорода для характеристики кислотности среды неудобно. Обычно для этой цели применяют величину отрицательного десятичного логарифма концентрации водородных ионов, которую называют водородным показателем рН («пэ аш»): pH--lg. Тогда для нейтральной среды рН = -lglO"7 = 7, для кислых растворов рН < 7, для щелочных рН > 7. Пример 1 Определите концентрации ионов водорода и гидроксид ионов в 5 10~4 М растворе соляной кислоты. Дано: См(НС1) « 5 10"4 М Найти: [Н+]; [ОН"] Решение: Так как НС1 - сильный электролит, то [Н+] будет равной молярной концентрации кислоты, т. е. Сн+ = 5 10~4 моль/л, Ю"14 10"14 = WT ~ 5 > Ю-4 " 2 "10 М0ЛЬ/Л-Ответ: [Н+] = 5 10~4 моль/л; [ОН"] = 2 10"п моль/л. Пример 2 Определите рН 0,01 М раствора КОН. Дано: Найти: рН(р-ра) Решение: КОН - сильный электролит, и поэтому [ОН~] будет равна концентрации щелочи, т. е. [ОН"]= 10"2 моль/л. 1(Г14 КГ1 моль/л" рН - -lg = -lglO"12 = 12. Ответ: рН = 12.