Решение систем линейных неравенств графически. Системы неравенств: определение, виды, примеры решения Как решать систему неравенств 9

Статья раскрывает тему неравенств, разбираются определения систем и их решения. Будут рассмотрены часто встречающиеся примеры решения систем уравнений в школе на алгебре.

Определение системы неравенств

Системы неравенств определяют по определениям систем уравнений, значит, что особое внимание уделяется записям и смыслу самого уравнения.

Определение 1

Системой неравенств называют запись уравнений, объединенных фигурной скобкой с множеством решений одновременно для всех неравенств, входящих в систему.

Ниже приведены примеры неравенств. Даны два неравенства 2 · x − 3 > 0 и 5 − x ≥ 4 · x − 11 . Необходимо записать одно уравнение под другим, после чего объединим при помощи фигурной скобки:

2 · x - 3 > 0 , 5 - x ≥ 4 · x - 11

Таким же образом определение систем неравенств представлены в школьных учебниках как для использования одной переменной, так и двух.

Основные виды системы неравенств

Имеет место составление бесконечного множества систем неравенств. Их классифицируют по группам, отличающихся по определенным признакам. Неравенства подразделяют по критериям:

  • количество неравенств системы;
  • количество переменных записи;
  • вид неравенств.

Количество входящих неравенств может насчитывать от двух и более. В предыдущем пункте рассматривался пример решения системы с двумя неравенствами.

2 · x - 3 > 0 , 5 - x ≥ 4 · x - 11

Рассмотрим решение системы с четырьмя неравенствами.

x ≥ - 2 , y ≤ 5 , x + y + z ≥ 3 , z ≤ 1 - x 2 - 4 · y 2

Решение неравенства отдельно не говорит о решение системы в целом. Для решения системы необходимо задействовать все имеющиеся неравенства.

Такие системы неравенств могут иметь одну, две, три и более переменных. В последней изображенной системе это отчетливо видно, там имеем три переменные: x , y , z . Уравнения могут содержать по одной переменной, как в примере, либо по несколько. Исходя из примеров, неравенство x + 0 · y + 0 · z ≥ − 2 и 0 · x + y + 0 · z ≤ 5 не считают равнозначными. Школьным программам уделяют внимание решению неравенств с одной переменной.

При записи системы могут быть задействованы уравнения разных видов и с разным количеством переменных. Чаще всего встречаются целые неравенства разных степеней. При подготовке к экзаменам могут встретиться системы с иррациональными, логарифмическими, показательными уравнениями вида:

544 - 4 - x 32 - 2 - x ≥ 17 , log x 2 16 x + 20 16 ≤ 1

Такая система включает в себя показательное и логарифмическое уравнение.

Решение системы неравенств

Определение 2

Рассмотрим пример решения систем уравнений с одной переменной.

x > 7 , 2 - 3 · x ≤ 0

Если значение х = 8 , то решение системы очевидно, так как выполняется 8 > 7 и 2 − 3 · 8 ≤ 0 . При х = 1 система не решится, так как первое числовое неравенство во время подстановки имеет 1 > 7 . Таким же образом решается система с двумя и более переменными.

Определение 3

Решение системы неравенств с двумя и более переменными называют значения, которые являются решением всех неравенств при обращении каждого в верное числовое неравенство.

Если х = 1 и у = 2 будет решением неравенства x + y < 7 x - y < 0 , потому как выражения 1 + 2 < 7 и 1 − 2 < 0 верны. Если подставить числовую пару (3 , 5 , 3) , тогда система не даст значения переменных и неравенство будет неверным 3 , 5 − 3 < 0 .

При решении системы неравенств могут давать определенное количество ответов, а могут и бесконечное. Имеется ввиду множество решений такой системы. При отсутствии решений говорят о том, что она имеет пустое множество решений. Если решение имеет определенное число, тогда множества решений имеет конечное число элементов. Если решений много, тогда множество решений содержит бесконечное множество чисел.

Некоторые учебники дают определение частного решения системы неравенств, которое понимается как отдельно взятое решение. А общим решением системы неравенствсчитают все его частные решения. Такое определение используется редко, поэтому говорят «решение системы неравенств».

Данные определения систем неравенств и решения рассматриваются как пересечения множеств решений всех неравенств системы. Особое внимание стоит уделить разделу, посвященному равносильным неравенствам.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы начнем изучение систем неравенств. Вначале будем рассматривать системы линейных неравенств. В начале урока рассмотрим, откуда и зачем возникают системы неравенств. Далее изучим, что значит решить систему, и вспомним объединение и пересечение множеств. В конце будем решать конкретные примеры на системы линейных неравенств.

Тема : Рацион альные неравенства и их системы

Урок: Основн ые понятия, решение систем линейных неравенств

До сих пор мы решали отдельные неравенства и применяли к ним метод интервалов, это могли быть и линейные неравенства , и квадратные и рациональные. Теперь перейдем к решению систем неравенств - сначала линейных систем . Посмотрим на примере, откуда берется необходимость рассматривать системы неравенств.

Найти область определения функции

Найти область определения функции

Функция существует, когда существуют оба квадратних корня, т.е.

Как решать такую систему? Необходимо найти все x, удовлетворяющие и первому и второму неравенству.

Изобразим на оси ox множество решений первого и второго неравенства.

Промежуток пересечения двух лучей и есть наше решение.

Такой метод изображения решения системы неравенств иногда называют методом крыш.

Решением системы является пересечение двух множеств.

Изобразим это графически. Имеем множество А произвольной природы и множество В произвольной природы, которые пересекаются.

Определение: Пересечением двух множеств А и В называется такое третье множество, которое состоит из всех элементов, входящих и в А и в В.

Рассмотрим на конкретных примерах решения линейных систем неравенств, как находить пересечения множеств решений отдельных неравенств, входящих в систему.

Решить систему неравенств:

Ответ: (7; 10].

4. Решить систему

Откуда может взяться второе неравенство системы? Например, из неравенства

Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.

Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно исключить.

Ответ: система противоречива.

Мы рассмотрели типовые опорные задачи, к которым сводится решение любой линейной системы неравенств.

Рассмотрим следующую систему.

7.

Иногда линейная система задается двойным неравенством, рассмотрим такой случай.

8.

Мы рассмотрели системы линейных неравенств, поняли, откуда они появляются, рассмотрели типовые системы, к которым сводятся все линейные системы, и решили некоторые из них.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Портал Естественных Наук ().

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

4. Центр образования «Технология обучения» ().

5. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 53; 54; 56; 57.

Решение неравенства с двумя переменными , а тем более системы неравенств с двумя переменными , представляется достаточно сложной задачей. Однако есть простой алгоритм, который помогает легко и без особых усилий решать на первый взгляд очень сложные задачи такого рода. Попробуем в нем разобраться.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

1. Строим график функции y = f(x), который разбивает плоскость на две области.

2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией.
А теперь рассмотрим несколько задач на эту тему.

Задача 1.

Какое множество точек задается неравенством x · y ≤ 4?

Решение.

1) Строим график уравнения x · y = 4. Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x. Получим: y = 4/x. Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2).
Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции y = 4/x, рисуем сплошной линией.

Закрасим множество точек, которое задает исходное неравенство, желтым цветом (рис. 1).

Задача 2.

Изобразить область, заданную на координатной плоскости системой
{ y > x 2 + 2;
{y + x > 1;
{ x 2 + y 2 ≤ 9.

Решение.

Строим для начала графики следующих функций (рис. 2) :

y = x 2 + 2 – парабола,

y + x = 1 – прямая

x 2 + y 2 = 9 – окружность.

1) y > x 2 + 2.

Берем точку (0; 5), которая лежит выше графика функции.
Проверяем неравенство: 5 > 0 2 + 2 – верно.

Следовательно, все точки, лежащие выше данной параболы y = x 2 + 2, удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

2) y + x > 1.

Берем точку (0; 3), которая лежит выше графика функции.
Проверяем неравенство: 3 + 0 > 1 – верно.

Следовательно, все точки, лежащие выше прямой y + x = 1, удовлетворяют второму неравенству системы. Закрасим их зеленой штриховкой.

3) x 2 + y 2 ≤ 9.

Берем точку (0; -4), которая лежит вне окружности x 2 + y 2 = 9.
Проверяем неравенство: 0 2 + (-4) 2 ≤ 9 – неверно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 9, не удовлетворяют третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности x 2 + y 2 = 9, удовлетворяют третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку (рис. 3) .

(рис. 4) .

Задача 3.

Изобразить область, заданную на координатной плоскости системой:
{x 2 + y 2 ≤ 16;
{x ≥ -y;
{x 2 + y 2 ≥ 4.

Решение.

Строим для начала графики следующих функций:

x 2 + y 2 = 16 – окружность,

x = -y – прямая

x 2 + y 2 = 4 – окружность (рис. 5) .

Теперь разбираемся с каждым неравенством в отдельности.

1) x 2 + y 2 ≤ 16.

Берем точку (0; 0), которая лежит внутри окружности x 2 + y 2 = 16.
Проверяем неравенство: 0 2 + (0) 2 ≤ 16 – верно.

Следовательно, все точки, лежащие внутри окружности x 2 + y 2 = 16, удовлетворяют первому неравенству системы.
Закрасим их красной штриховкой.

Берем точку (1; 1), которая лежит выше графика функции.
Проверяем неравенство: 1 ≥ -1 – верно.

Следовательно, все точки, лежащие выше прямой x = -y, удовлетворяют второму неравенству системы. Закрасим их синей штриховкой.

3) x 2 + y 2 ≥ 4.

Берем точку (0; 5), которая лежит вне окружности x 2 + y 2 = 4.
Проверяем неравенство: 0 2 + 5 2 ≥ 4 – верно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 4, удовлетворяют третьему неравенству системы. Закрасим их голубым цветом.

В данной задаче все неравенства нестрогие, значит, все границы рисуем сплошной линией. Получаем следующую картинку (рис. 6) .

Искомая область – это область, где все три раскрашенных области пересекаются друг с другом (рис 7) .

Остались вопросы? Не знаете, как решить систему неравенств с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

называется любая совокупность двух или более линейных неравенств, содержащих одну и туже неизвестную величину

Вот образцы подобных систем:

Промежуток пересечения двух лучей и есть наше решение. Следовательно решением данного неравенства выступают все х расположенные между двойкой и восьмеркой.

Ответ: х

Применение такого типа отображения решения системы неравенств иногда именуют методом крыш .

Определение: Пересечением двух множеств А и В называется такое третье множество, которое включает все элементы, входящих и в А и в В . Это смысл пересечения множеств произвольной природы. Нами сейчас детально рассматриваются числовые множества, поэтому при нахождении линейных неравенств такими множествами являются лучи - сонаправленные, противонаправленные и так далее.

Выясним на реальных примерах нахождение линейных систем неравенств, как определить пересечения множеств решений отдельных неравенств, входящих в систему.

Вычислим систему неравенств :

Поместим одну под другой две силовые прямые. На верхней нанесем те значения х, которые выполняют первое неравенство x >7 , а на нижней - которые выступают решением второго неравенства x >10 Соотнесем результаты числовых прямых, выясним, что оба неравенства будут удовлетворятся при x >10.

Ответ: (10;+∞).

Делаем по аналогии с первым образцом. На заданной числовой оси наносим все те значения х при которых существует первое неравенство системы , а на второй числовой оси, размещенной под первой, - все те значения х , при которых выполняется второе неравенство системы. Соотнесем эти два результата и определим, что оба неравенства одновременно будут выполнятся при всех значениях х расположенных между 7 и 10 с учетом знаков получаем 7<х≤10

Ответ: (7; 10].

Подобным образом решаются и нижеследующие системы неравенств.

Например:

\(\begin{cases}5x+2≥0\\x<2x+1\\x-4>2\end{cases}\)

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)

\(\begin{cases}(x^2+1)(x^2+3)(x^2-1)≥0\\x<3\end{cases}\)

Решение системы неравенств

Чтобы решить систему неравенств нужно найти значения иксов, которые подойдут всем неравенствам в системе – это и значит, что они выполняются одновременно.

Пример. Решим систему \(\begin{cases}x>4\\x\leq7\end{cases}\)
Решение: Первое неравенство становится верным, если икс больше \(4\). То есть, решения первого неравенства – все значения иксов из \((4;\infty)\), или на числовой оси:

Второму неравенству подойдут значения иксов меньшие чем 7, то есть любой икс из интервала \((-\infty;7]\) или на числовой оси:

А какие значения подойдут обоим неравенствам? Те, которые принадлежат обоим промежуткам, то есть где промежутки пересекаются.


Ответ: \((4;7]\)

Как вы могли заметить для пересечения решений неравенств в системе удобно использовать числовые оси.

Общий принцип решения систем неравенств: нужно найти решение каждого неравенства, а потом пересечь эти решения с помощью числовой прямой.


Пример: (Задание из ОГЭ) Решить систему \(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)


Решение:

\(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)

Давайте каждое неравенство решим отдельно от другого.

Перевернем получившееся неравенство.

Поделим все неравенство на \(2\).

Запишем ответ для первого неравенства.

\(x∈(-∞;4)\)

Теперь решим второе неравенство.

2) \((x-5)(x+8)<0\)

Неравенство уже в идеальном виде для применения .

Запишем ответ для второго неравенства.

Объединим оба решения с помощью числовых осей.

Выпишем в ответ промежуток, на котором есть решение обоих неравенств - и первого, и второго.

Ответ: \((-8;4)\)

Пример: (Задание из ОГЭ) Решить систему \(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)


Решение:

\(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)

Снова будем решать неравенства по отдельности.

1)\(\frac{10-2x}{3+(5-2x)^2}\) \(≥0\)

Если вас испугал знаменатель – не бойтесь, сейчас мы его уберем.
Дело в том, что \(3+(5-2x)^2\)– всегда положительное выражение. Посудите сами: \((5-2x)^2 \)из-за квадрата либо положительно, либо равно нулю. \((5-2x)^2+3\) – точно положительно. Значит можно неравенство смело умножать на \(3+(5-2x)^2\)

Перед нами обычное – выразим \(x\). Для этого перенесем \(10\) в правую часть.

Поделим неравенство на \(-2\). Так как число отрицательное меняем знак неравенства.

Отметим решение на числовой прямой.

Запишем ответ к первому неравенству.

\(x∈(-∞;5]\)

На данном этапе главное не забыть, что есть второе неравенство.

2) \(2-7x≤14-3x\)

Опять линейное неравенство – опять выражаем \(x\).

\(-7x+3x≤14-2\)

Приводим подобные слагаемые.

Делим все неравенство на \(-4\), перевернув при этом знак.

Изобразим решение на числовой оси и выпишем ответ для этого неравенства.

\(x∈[-3;∞)\)

А теперь объединим решения.

Запишем ответ.

Ответ: \([-3;5]\)

Пример: Решить систему \(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)


Решение:

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)