Разработка урока по химии (10 класс) - Алкины. Ацетилен, его получение пиролизом метана и карбидным способом

ОПРЕДЕЛЕНИЕ

Непредельные (ненасыщенные) углеводороды – углеводороды, содержащие кратные (двойные или тройные) связи. Среди непредельных углеводородов выделяют алкены (содержат одну двойную связь), алкадиены (содержат две двойные связи) и алкины (содержат три двойные связи).

ОПРЕДЕЛЕНИЕ

Алкины – непредельные углеводороды, молекулы которых содержат одну тройную связь, в названии алкинов присутствует суффикс –ин. Общая формула алкинов C n H 2 n -2 .

Таблица 1. Гомологический ряд алкинов.

Чтобы дать название алкину необходимо выбрать самую длинную углеводородную цепь, содержащую тройную связь. Нумерация цепи начинается с того края, ближе к которому находится тройная связь.

Изомерия

Для алкинов, начиная с пентина, характерна изомерия углеродного скелета:

CH≡C-CH 2 -CH 2 -CH 3 (пентин-1)

CH≡C-CH(CH 3)-CH 3 (3-метилбутин1)

начиная с бутина, для всех алкинов характерна изомерия положения тройной связи:

CH≡C-CH 2 -CH 3 (бутин-1)

CH 3 -C≡C-CH 3 (бутин-2)

Для алкинов характерна межклассовая изомерия с алкадиенами, так веществу с составом C 4 H 6 , соответствует три разных вещества – бутин-1, бутин-2 и бутадиен-1,3.

Строение алкинов

Атомы углерода тройной связи в молекулах алкинов находятся в sp-гибридизации: две σ-связи располагаются на одной линии под углом 180С друг к другу, две π-связи образованы p-электронами соседних атомов углерода и располагаются во взаимно перпендикулярных плоскостях. Тройная связь является сочетанием одной σ- и двух π-связей.

Физические свойства алкинов

При обычных условиях C 2 -С 4 – газы, С 5 -С 16 – жидкости, начиная с С 18 – твердые вещества. Температуры алкинов выше, чем у соответствующих алкенов.

Получение

Выделяют промышленные и лабораторные способы получения ацетилена. Так, в промышленности ацетилен получают путем высокотемпературного крекинга метана:

2CH 4 → СH≡CH +3H 2

В лаборатории ацетилен получают гидролизом карбида кальция:

CaC 2 +2H 2 O = Ca(OH) 2 + C 2 H 2

Для получения алкинов чаще всего используют:

— реакции дегидрирования алканов и алкенов

CH 3 -CH 3 → СH≡CH +2H 2

CH 2 =CH 2 → СH≡CH +H 2

— реакции элиминирования дигалогенпроизводных

(CH 3) 3 -CCl 2 -CH 3 +2KOH →(CH 3) 3 -C≡CH + 2KCl + 2H 2 O

— реакции ацетиленидов с первичными галогеналканами

СH≡CNa + CH 3 -CH 2 -CH 2 -Br →СH≡C-(CH 2) 3 -CH 3 + NaBr

Химические свойства алкинов

Для алкинов характерны реакции присоединения, протекающие по нуклеофильному механизму, такие как:

— гидрирование – присоединение воды в присутствии 18%-й серной кислоты, сульфата ртути (II) и нагревании до 90С (реакция Кучерова), в результате чего образуются альдегиды

СH≡CH +H 2 O → → CH 3 -CH=O

— галогенирование – присоединение галогенов, протекающее в две стадии

СH≡CH +Br 2 →CHBr=CHBr + Br 2 →CHBr 2 -CHBr 2

— гидрогалогенирование – присоединение галогеноводородов, также, протекающее в две стадии и присоединение второй молекулы галогеноводорода протекает по правилу Марковникова (присоединение галогеноводородов к тройной связи протекает труднее, чем к двойной)

СH≡CH +HСl → CH 2 =CHCl + HCl → CH 3 -CHCl 2

Для алкинов, имеющий концевую тройную связь, характерно наличие слабых кислотных свойств. Такие алкины способны образовывать соли при взаимодействии с активными металлами:

2R-C≡C-H +2Na →2R-C≡C-Na + H 2

Ацетилинид серебра легко образуется и выпадает в осадок при пропускании ацетилена через аммиачный раствор оксида серебра:

СH≡CH + Ag 2 O → Ag- С≡C-Ag↓ + H 2 O

Ацетилен способен тримеризоваться – при пропускании ацетилена над активированным углем при 600С образуется бензол:

3C 2 H 2 → C 6 H 6

Для алкинов характерны реакции окисления и восстановления. Так, алкины легко окисляются перманганатом калия. В результате этой реакции образуются карбоновые кислоты:

R- С≡C-R’ +[O] +H 2 O → R-COOH + R’-COOH

В присутствии металлических катализаторов алкины присоединяют молекулы водорода:

CH 3 -C≡CH + H 2 → CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 3

Качественными реакциями на тройную связь являются реакции обесцвечивания раствора бромной воды и перманганата калия, а также реакция с аммиачным раствором оксида серебра в случае концевого положения тройной связи.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.
Решение Ацетилен поглощается бромной водой:

НC ≡ СH + 2Вr 2 → НСВr 2 -СНВr 2

1,3 г — это масса ацетилена, следовательно, количество вещества ацетилена:

v(C 2 H 2) = 1,3/26 = 0,05 моль

При сгорании этого количества ацетилена по уравнению

2С 2 Н 2 + 5О 2 = 4СО 2 + 2Н 2 О

Выделилось:

2-0,05 = 0,1 моль СО 2

Общее количество СО 2 равно:

14/22,4 = 0,625 моль

При сгорании пропана по уравнению

С 3 Н 8 + 5О 2 = ЗСO 2 + 4Н 2 О

Выделилось

0,625 — 0,1 = 0,525 моль СО 2

при этом в реакцию вступило

0,525/3 = 0,175 моль С 3 Н 8

Масса пропана:

0,175 — 44 = 7,7 г.

Общая масса смеси углеводородов равна:

1,3+7,7 = 9,0 г

Массовая доля пропана составляет:

w(С 3 Н 8) = 7,7/9,0 = 0,856, или 85,6%.

Ответ Массовая доля пропана 85,6%.

Алкины (иначе ацетиленовые углеводороды) - углеводороды, содержащие тройную связь между атомами углерода, с общей формулой CnH2n-2. Атомы углерода при тройной связи находятся в состоянии sp - гибридизации.

Взаимодействие ацетилена с бромной водой

Молекула ацетилена содержит тройную связь, бром разрушает её и присоединяется к ацетилену. Образуется терабромэтан. Бром расходуется на образование тетрабромэтана. Бромная вода (жёлтая) - обесцвечивается.


Эта реакция протекает с меньшей скоростью, чем в ряду этиленовых углеводородов. Реакция также проходит ступенчато:


HC ≡ CH + Br 2 → CHBr = CHBr + Br 2 → CHBr 2 - CHBr 2


ацетилен → 1,2-дибромэтан → 1,1,2,2-тетрабромэтан


Обесцвечивание бромной воды доказывает непредельность ацетилена.

Реакция ацетилена с раствором перманганата калия

В растворе перманганата калия происходит окисление ацетилена, при этом происходит разрыв молекулы по месту тройной связи, раствор быстро обесцвечивается.


3НC ≡ СН + 10KMnO 4 + 2H 2 O → 6CO 2 + 10КОН + 10MnO 2


Эта реакция является качественной реакцией на двойную и тройную связь.

Реакция ацетилена с аммиачным раствором оксида серебра

Если ацетилен пропустить через аммиачный раствор оксида серебра, атомы водорода в молекуле ацетилена легко заместятся металлами, так как обладают большой подвижностью. В данном опыте атомы водорода замещаются атомами серебра. Образуется ацетиленид серебра - осадок жёлтого цвета (взрывоопасен).


CH ≡ СН + OH → AgC≡CAg↓ + NH 3 + H 2 O


Эта реакция является качественной реакцией на тройную связь.

Постановка опытов и текст – к.п.н. Павел Беспалов.

Взаимодействие ацетилена с хлором

В цилиндр насыпаем небольшое количество кристаллов перманганата калия и бросаем кусочек карбида кальция. Затем приливаем в цилиндр соляную кислоту. В сосуде наблюдаются вспышки, стенки цилиндра покрываются сажей. При взаимодействии соляной кислоты с перманганатом калия выделяется газ хлор

16 HCI + 2KMnO 4 = 5CI 2 + 2 KCI + 2 MnCI 2 + 8H 2 O

С соляной кислотой карбид кальция дает ацетилен

СаС 2 + 2 HCI = С 2 Н 2 + СаCI 2

Хлор с ацетиленом взаимодействуют, образуя хлороводород и уголь

С 2 Н 2 + CI 2 = 2С + 2 Н CI

Оборудование: цилиндр, шпатель.

Техника безопасности. Соблюдать правила работы с горючими газами. Опыт проводить только под тягой. После проведения опыта цилиндр залить водой.

Взаимодействие этилена с бромной водой

Получаем этилен нагреванием смеси этилового спирта с концентрированной серной кислотой. Выделяющийся этилен пропустим через раствор брома в воде, который называют бромной водой. Бромная вода очень быстро обесцвечивается. Бром присоединяется к этилену по месту двойной связи. При этом образуется 1,2-дибромэтан.

СН 2 =СН 2 + Br 2 = CH 2 Br CH 2 Br

Реакция обесцвечивания водного раствора брома служит качественной реакцией на непредельность органических соединений.

Оборудование:

Техника безопасности.

Взаимодействие ацетилена с бромной водой

Ацетилен получаем действием воды на карбид кальция. Пропустим выделяющийся ацетилен через бромную воду. Наблюдаем обесцвечивание бромной воды. Бром присоединяется к ацетилену по месту тройной связи. При этом образуется соединение с четырьмя атомами брома в молекуле — 1,1,2,2-тетрабромэтан.

СН ≡ СН + 2 Br 2 = CHBr 2 CHBr 2

Обесцвечивание бромной воды доказывает непредельность ацетилена.

Оборудование: колба Вюрца, делительная воронка, газоотводная трубка, стакан или пробирка, штатив.

Техника безопасности. Опыт следует проводить под тягой. Соблюдать правила работы с горючими газами.

Взаимодействие ацетилена с раствором перманганата калия

Ацетилен получаем действием воды на карбид кальция. При пропускании ацетилена через подкисленный раствор перманганата калия наблюдаем быстрое обесцвечивание раствора. Происходит окисление ацетилена по месту разрыва тройной связи с образованием продукта окисления – щавелевой кислоты. В избытке перманганата калия щавелевая кислота окисляется до углекислого газа и воды.

Обесцвечивание раствора перманганата калия служит доказательством непредельности ацетилена.

Оборудование: колба Вюрца, делительная воронка, газоотводная трубка, стакан, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами.

Взаимодействие этилена с раствором перманганата калия.

Получаем этилен нагреванием смеси этилового спирта с концентрированной серной кислотой. Опустим газоотводную трубку с выделяющимся этиленом в подкисленный раствор перманганата калия. Раствор быстро обесцвечивается. При этом этилен окисляется в двухатомный спирт этиленгликоль.

СН 2 =СН 2 + [О] + Н-ОН = CH 2 ОН — CH 2 ОН

Эта реакция является качественной реакцией на двойную связь.

Оборудование: колба Вюрца, капельная воронка, промывалка, газоотводная трубка, стакан или пробирка, штатив.

Техника безопасности.

Соблюдать правила работы с горючими газами, концентрированными кислотами и огнеопасными жидкостями.

Взрыв смеси ацетилена с кислородом

Смесь ацетилена с кислородом при поджигании взрывается с большой силой. Поэтому безопасно экспериментировать только небольшими объемами смеси — в этом нам поможет раствор мыла. В фарфоровую ступку с водой и раствором мыла добавим немного пероксида водорода. К полученному раствору прибавим катализатор — диоксид марганца. Сразу же начинается выделение кислорода.

2Н 2 О 2 = 2Н 2 О + О 2

В эту смесь опустим небольшой кусочек карбида кальция. При взаимодействии с водой он дает ацетилен.

СаС 2 + 2 Н 2 О = С 2 Н 2 + Са(ОН) 2

На поверхности раствора, благодаря присутствию мыла, образуются пузыри, заполненные смесью ацетилена с кислородом. При поджигании пузырей происходят сильные взрывы смеси ацетилена с кислородом.

Оборудование: фарфоровая ступка, лучина.

Техника безопасности. Соблюдать правила работы с горючими газами. Поджигать можно только небольшой объем смеси.

Горение ацетилена

Получим ацетилен из карбида кальция и воды. Закроем колбу пробкой с газоотводной трубкой. В конец газоотводной трубки вставлена игла для инъекций. Через некоторое время, когда ацетилен полностью вытеснит воздух из колбы, подожжем выделяющейся газ. Ацетилен горит белым ярким пламенем. При горении ацетилена образуется углекислый газ и вода.

2СН ≡ СН + 5О 2 → 4СО 2 + 2Н 2 О

Внесем пробирку в пламя горящего ацетилена. На пробирке оседает сажа. При недостатке кислорода ацетилен не успевает полностью сгорать и выделяет углерод в виде сажи. Светимость пламени объясняется большим процентным содержанием углерода в ацетилене и высокой температурой его пламени, в котором раскаляются несгоревшие частицы углерода.

Оборудование: круглодонная колба, пробка с иглой от медицинского шприца, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами. Поджигать ацетилен можно только после отбора пробы на чистоту.

Горение этилена

Получаем этилен нагреванием смеси этилового спирта с концентрированной серной кислотой. Смесь готовят из одной части спирта и трех частей серной кислоты. Серная кислота играет роль водоотнимающего средства. При нагревании смеси выделяется этилен.

С 2 Н 5 ОН = С 2 Н 4 + Н 2 О

Собираем этилен в цилиндр способом вытеснения воды. Этилен – бесцветный газ, малорастворимый в воде. Этилен сгорает на воздухе с образованием углекислого газа и воды.

С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О

Оборудование: колба Вюрца, делительная воронка, промывалка, газоотводная трубка, штатив, цилиндр.

Техника безопасности. Соблюдать правила работы с горючими газами, концентрированными кислотами и огнеопасными жидкостями.

Получение ацетиленида меди

Ацетилен получаем действием воды на карбид кальция. Атомы водорода в молекуле ацетилена обладают большой подвижностью. Поэтому они легко могут быть замещены металлами. Пропустим через аммиачный раствор хлорида меди (I) ацетилен. Выпадает красный осадок ацетиленида меди (I) .

СН ≡ СН + 2 CuCI CuC CCu ↓ + 2 HCI

Оборудование:

Техника безопасности. Соблюдать правила работы с горючими газами. Получать только небольшие количества ацетиленида меди. Высушеный ацетиленид меди — очень опасное взрывчатое вещество. Его уничтожают обработкой концентрированной соляной кислотой.

Получение ацетиленида серебра

Ацетилен получаем действием воды на карбид кальция. Атомы водорода в молекуле ацетилена обладают большой подвижностью. Поэтому они легко могут быть замещены металлами. Пропустим через аммиачный раствор оксида серебра ацетилен. Выпадает осадок ацетиленида серебра.

СН ≡ СН + А g 2 O AgC CAg ↓ + H 2 O

Оборудование: колба Вюрца, делительная воронка, газоотводная трубка, стакан или пробирка, полипропиленовая воронка, фильтровальная бумага, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами. Получать только небольшие количества ацетиленида серебра. Высушенный ацетиленид серебра — очень опасное взрывчатое вещество. Его уничтожают обработкой концентрированной соляной кислотой.

Непрочность ацетиленидов металлов

Ацетилениды металлов — неустойчивые соединения. Во влажном состоянии ацетиленид серебра устойчив, высушенный он легко взрывается. Поднесем к сухому ацетилениду серебра тлеющую лучинку — он взрывается. Проведем аналогичный эксперимент с ацетиленидом меди (I). Так же как и ацетиленид серебра, ацетиленид меди (I) во влажном состоянии устойчив, но легко разлагается, если его высушить. Горящая лучинка, поднесенная к сухому ацетилениду меди (I), приводит к взрыву. При этом появляется пламя, окрашенное в зеленый цвет.

Оборудование: огнезащитная прокладка, лучина.

Техника безопасности. Получать и разлагать можно только небольшие количества ацетиленида серебра и меди. Высушеные ацетилениды серебра и меди — опасные взрывчатые вещества. Ацетилениды уничтожают обработкой концентрированной соляной кислотой.

Как вы уже знаете, ацетилен - продукт неполного разложения метана. Этот процесс называют пиролизом (от греч. пир - огонь, лизис - разложение). Теоретически ацетилен можно представить как продукт дегидрирования этилена:

На практике ацетилен, кроме пиролизного способа, очень часто получают из карбида кальция:

Особенность строения молекулы ацетилена (рис. 21) состоит в том, что между атомами углерода имеется тройная связь, т. е. он является еще более непредельным соединением, чем этилен, молекула которого содержит двойную углерод-углеродную связь.

Рис. 21.
Модели молекулы ацетилена: 1 - шаростержневая; 2 - масштабная

Ацетилен является родоначальником гомологического ряда алкинов, или ацетиленовых углеводородов.

Ацетилен - это бесцветный газ без запаха, малорастворимый в воде.

Рассмотрим химические свойства ацетилена, которые лежат в основе его применения.

Ацетилен на воздухе горит коптящим пламенем из-за высокого содержания углерода в его молекуле, поэтому для сжигания ацетилена используют кислород:

Температура ацетиленокислородного пламени достигает 3200 °С. Таким пламенем можно резать и сваривать металлы (рис. 22).

Рис. 22.
Ацетиленокислородное пламя используют для резки и сварки металла

Как и все непредельные соединения, ацетилен активно вступает в реакции присоединения. 1) галогенов (галогенирование), 2) водорода (гидрирование), 3) галогеноводородов (гидрогалогенирование), 4) воды (гидратация).

Рассмотрим, например, реакцию гидрохлорирования - присоединения хлороводорода:


Почему продукт гидрохлорирования ацетилена называют хлорэтеном, вам понятно. А почему - винилхлоридом? Потому что одновалентный радикал этилена СН 2 =СН- называют винилом. Винилхлорид - это исходное соединение для получения полимера - поливинилхлорида, который находит широкое применение (рис. 23). В настоящее время винилхлорид получают не гидрохлорированием ацетилена, а другими способами.

Рис. 23.
Применение поливинилхлорида:
1 - искусственная кожа; 2 - изолента; 3 - изоляция проводов; 4 - трубы; 5 - линолеум; 6 - клеенка

Поливинилхлорид получают с помощью уже знакомой вам реакции полимеризации. Полимеризация винилхло-рида в поливинилхлорид может быть описана с помощью следующей схемы:

или уравнения реакции:

Реакция гидратации, протекающая в присутствии солей ртути, содержащих катион Hg 2+ , в качестве катализатора, носит имя выдающегося русского химика-органика М. Г. Кучерова и раньше широко использовалась для получения очень важного органического соединения - уксусного альдегида:

Реакцию присоединения брома - бромирование - используют как качественную реакцию на кратную (двойную или тройную) связь. При пропускании ацетилена (или этилена, или большинства других непредельных органических соединений) через бромную воду можно наблюдать ее обесцвечивание. При этом происходят следующие химические превращения:

Еще одной качественной реакцией на ацетилен и непредельные органические соединения является обесцвечивание раствора перманганата калия.

Ацетилен - важнейший продукт химической промышленности, который имеет широкое применение (рис. 24).

Рис. 24.
Применение ацетилена:
1 - резка и сварка металлов; 2-4 - производство органических соединений (растворителей 2, поливинилхлорида 3, клея 4)

Новые слова и понятия

  1. Алкины.
  2. Ацетилен.
  3. Химические свойства, ацетилена: горение, присоединение галогеноводородов, воды (реакция Кучерова), галогенов.
  4. Поливинилхлорид.
  5. Качественные реакции на кратную связь: обесцвечивание бромной воды и раствора перманганата калия.

Вопросы и задания


При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.

Решение: Ацетилен поглощается бромной водой:

НC ≡ СH + 2Вr 2 → НСВr 2 -СНВr 2 .

1,3 г – это масса ацетилена. v(C 2 H 2) = 1,3/26 = 0,05 моль. При сгорании этого количества ацетилена по уравнению

2С 2 Н 2 + 5О 2 = 4СО 2 + 2Н 2 О

выделилось 2-0,05 = 0,1 моль СО 2 . Общее количество СО 2 равно 14/22,4 = 0,625 моль. При сгорании пропана по уравнению

С 3 Н 8 + 5О 2 = ЗСO 2 + 4Н 2 О

выделилось 0,625 – 0,1 = 0,525 моль СО 2 , при этом в реакцию вступило 0,525/3 = 0,175 моль С 3 Н 8 массой 0,175 – 44 = 7,7 г.

Общая масса смеси углеводородов равна 1,3+7,7 = 9,0 г, а массовая доля пропана составляет: (С 3 Н 8) = 7,7/9,0 = 0,856, или 85,6%.

Ответ. 85,6% пропана.