Клеточная мембрана: определение, функции мембран. Жидкостно-кристаллическая модель

Классификация

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на локализации белка по отношению к липидному бислою. Биохимическая классификация основана на прочности взаимодействия белка с мембраной.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры.

Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённого жирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций -опосредованного).

Топологическая классификация

По отношению к мембране мембранные белки делятся на поли- и монотопические.

  • Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью , состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий , а также в митохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура (от 8 до 22 поворотов полипептидной цепи).
  • Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

Биохимическая классификация

По биохимической классификации мембранные белки делятся на интегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либо гликозилфосфатидилинозитола , присоединённых к белку в процессе их посттрансляционной модификации .

Ссылки


Wikimedia Foundation . 2010 .

Большинство мембранных белков являются интегральными компонентами мембран (они взаимодействуют с фосфолипидами); почти все достаточно полно изученные белки имеют протяженность , превышающую 5-10 нм, – величину, равную толщине бислоя . Эти интегральные белки обычно представляют собой глобулярные амфифильные структуры . Оба их конца гидрофильны, а участок, пересекающий сердцевину бислоя, гидрофобен. После установления структуры интегральных мембранных белков стало ясно, что некоторые из них (например, молекулы белков-переносчиков) могут пересекать бислой многократно , как это показано на рис. 12.

Интегральные белки распределены в бислое асимметрично (рис. 13). Если мембрану, содержащую асимметрично распределенные интегральные белки, растворить в детергенте (небольшие амфипатические молекулы, образующие в воде мицеллы; с их помощью трансмембранные белки могут быть солюбилизированы. При смешивании детергента с мембраной гидрофобные концы его молекул связываются с гидрофобными участками на поверхности мембранных белков, вытесняя оттуда молекулы липидов. Поскольку противоположный конец молекулы детергента полярный, такое связывание приводит к тому, что мембранные белки переходят в раствор в виде комплексов с детергентом), а затем детергент медленно удалить, то произойдет самоорганизация фосфолипидов и интегральных белков и сформируется мембранная структура, но белки в ней уже не будут специфическим образом ориентированы. Таким образом, асимметричная ориентация в мембране по крайней мере некоторых белков может задаваться при их включении в липидный бислой. Наружная гидрофильная часть амфифильного белка, которая, конечно, синтезируется внутри клетки, должна затем пересечь гидрофобный слой мембраны и в конечном итоге оказаться снаружи.

Периферические белки не взаимодействуют с фосфолипидами в бислое непосредственно; вместо этого они образуют слабые связи с гидрофильными участками специфических интегральных белков . Например, анкирин, периферический белок, связан с интегральным белком полосы III эритроцитарной мембраны. Спектрин, образующий скелет мембраны эритроцита, в свою очередь связан с анкирином и, таким образом, играет важную роль в поддержании двояковогнутой формы эритроцита (см. ниже). Молекулы иммуноглобулина являются интегральными белками плазматической мембраны и высвобождаются только вместе с небольшим фрагментом мембраны. Интегральными белками являются многие рецепторы различных гормонов, и специфические полипептидные гормоны, связывающиеся с этими рецепторами, можно, таким образом, считать периферическими белками . Такие периферические белки, как пептидные гормоны, могут даже детерминировать распределение в плоскости бислоя интегральных белков – их рецепторов.

Если основная роль липидов в составе мемб­ран заключается в стабилизации бислоя, то бел­ки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие явля­ются ферментами, третьи участвуют в связыва­нии цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов,

эйкозаноидов, липопротеинов, оксида азота (N0). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особеннос­ти функционирования каждой мембраны.

Особенности строения

и локализации белков в мембранах

Мембранные белки, контактирующие с гид­рофобной частью липидного бислоя, должны быть амфифильными. Те участки белка, кото­рые взаимодействуют с углеводородными цепя­ми жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, на­ходящиеся в области полярных «головок», обо­гащены гидрофильными аминокислотными ос­татками.

Локализация белков в мембранах. Трансмембранные белки, например: 1 - гликофорин А; 2 - рецептор адреналина. Поверхностные белки: 3 - белки, связанные с интегральными белками, например, фермент сукцинатдегидрогеназа; 4 - белки, присоединенные к полярным «головкам» липидного слоя, например, протеинкинаэа С; 5 - бел­ки, -заякоренные» в мембране с помощью короткого гидрофобного концевого домена, например, цитохрои b 5 ;6 - «заякоренные» белки, ковалентно соединённые с пипидом мембраны (например, фермент щелочная фосфатаза).

Белки мембран различаются по своему поло­жению в мембране. Они могут глу­боко проникать в липидный бислой или даже пронизывать его - интегральные белки, либо разными способами прикрепляться к мембра­не - поверхностные белки.

Поверхностные белки

Поверхностные белки часто прикрепляются к мембране, взаимодействуя с интегральными

белками или поверхностными участками липидного слоя.

Белки, образующие комплексы с интеграль­ными белками мембраны

Ряд пищеварительных ферментов, участвую­щих в гидролизе крахмала и белков, прикреп­ляется к интегральным белкам мембран микро­ворсинок кишечника.

Примерами таких комплексов могут быть сахараза-изомальтаза и мальтаза-гликоамилаза.

Белки, связанные с полярными «головками» липидов мембран

Полярные или заряженные домены белковой молекулы могут взаимодействовать с полярны­ми «головками» липидов, образуя ионные и во­дородные связи. Кроме того, множество раство­римых в цитозоле белков при определённых условиях могут связываться с поверхностью мембраны на непродолжительное время. Иног­да связывание белка - необходимое условие проявления ферментативной активности. К та­ким белкам, например, относят протеинкиназу С, факторы свёртывания крови.

Закрепление с помощью мембранного «якоря»

«Якорем» может быть неполярный домен белка, построенный из аминокислот с гидро-

фобными радикалами. Примером такого белка может служить цитохром b 5 мембраны ЭР. Этот белок участвует в окислительно-восстанови­тельных реакциях, как переносчик электронов.

Роль мембранного «якоря» может выполнять также ковалентно связанный с белком остаток жирной кислоты (миристиновой - С 14 или пальмитиновой - С 16). Белки, связанные с жирными кислотами, локализованы в основном на внутренней поверхности плазматической мембраны. Миристиновая кислота присоединя­ется к N-концевому глицину с образованием амидной связи. Пальмитиновая кислота обра­зует тиоэфирную связь с цистеином или слож-ноэфирную с остатками серина и треонина.

Небольшая группа белков может взаимодей­ствовать с наружной поверхностью клетки с помощью ковалентно присоединённого к С-концу белка фосфатидилинозитолгликана. Этот «якорь» - часто единственное связующее зве­но между белком и мембраной, поэтому при действии фосфолипазы С этот белок отделяет­ся от мембраны.

Трансмембранные (интегральные) белки

Некоторые из трансмембранных белков про­низывают мембрану один раз (гликофорин), дру­гие имеют несколько участков (доменов), пос­ледовательно пересекающих бислой.

Трансмембранные домены, пронизывающие бислой, имеют конформацию α -спирали. Поляр­ные остатки аминокислот обращены внутрь глобулы, а неполярные контактируют с мембранны­ми липидами. Такие белки называют «вывернуты­ми» по сравнению с растворимыми в воде белка­ми, в которых большинство гидрофобных остатков аминокислот спрятано внутрь, а гидрофильные располагаются на поверхности.

Радикалы заряженных аминокислот в соста­ве этих доменов лишены заряда и протониро-ваны (-СООН) или депротонированы (-NH 2).

Гликозилированные белки

Поверхностные белки или домены интеграль­ных белков, расположенные на наружной по­верхности всех мембран, почти всегда гликози-лированы. Олигосахаридные Остатки могут быть присоединены через амидную группу аспараги-на или гидроксильные группы серина и треонина.

Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов или адгезии.

Латеральная диффузия белков

Некоторые мембранные белки перемещают­ся вдоль бислоя (латеральная диффузия) или по­ворачиваются вокруг оси, перпендикулярно его поверхности.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их боль­шими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса.

Белки мембран не совершают перемещений с одной стороны мембраны на другую («флип-флоп» перескоки), подобно фосфолипидам.

Доля белка в общей массе мембраны может колебаться в очень широких пределах – от 18% в миелине до 75% в митохондриальной мембране.

По расположению в мембране белки можно разделить на: интегральные и периферические .

Интегральные белки являются, как правило, гидрофобными и легко встраиваются в липидный бислой.

Взаимодействие такого белка с мембраной происходит в несколько стадий. Сначала белок адсорбируется на поверхности бислоя, изменяет свою конформацию , устанавливая гидрофобный контакт с мембраной. Затем происходит внедрение белка в бислой. Глубина внедрения зависит от силы гидрофобного взаимодействия и соотношения гидрофобных и гидрофильных участков на поверхности белковой глобулы. Гидрофильные участки белка взаимодействуют с примембранными слоями по одну или обе стороны мембраны. Фиксация белковой глобулы в мембране происходит благодаря электростатическим и гидрофобным взаимодействиям. Углеводная часть белковых молекул (если она имеется) выступает наружу. Интегральные белки в силу тесной связи с бислоем оказывают на него существенное воздействие: конформационные перестройки белка приводят к изменению состояния липидов, так называемой деформации бислоя.

Периферические белки обладают меньшей глубиной проникновения в липидный бислой, и, соответственно, более слабо взаимодействуют с липидами мембраны, оказывая, на них гораздо меньшее воздействие, чем интегральные.

По характеру взаимодействия с мембраной белки делятся на монотопические, битопические, политопические :

монотопические белки взаимодействуют с поверхностью мембраны (моно – одним из слоев липидов);

битопические пронизывают мембрану насквозь (би – двумя слоями липидов);

политопические пронизывают мембрану несколько раз (поли- многократное взаимодействие с липидами).

Понятно, что первые относятся к периферическим белкам, а вторые и третьи к интегральным.

Белки мембран можно так же классифицировать по выполняемой ими функции. В связи с этим выделяют структурные белки:

· белки – ферменты;

· белки – рецепторы;

· транспортные белки.

Особую группу составляют белки цитоскелета клетки. Строго говоря, эти белки не являются компонентами мембраны, примыкая к ней с цитоплазматической стороны. Белки цитоскелета входят в состав всех его компонентов: миофиламенты содержат молекулы белка актина; в состав микротрубочек входит белок тубулин, промежуточные филаменты также содерждат более полиморфный белковый комплекс. Цитоскелет не только обеспечивают эластичность мембраны, противостоят изменениям объема клетки, но, по-видимому, участвует в и различных внутри- и внеклеточных механизмах регуляции.

В отличие от липидов, мембранные белки трудно классифицировать по структуре, целесообразнее подразделять основные вили мембранных белков исходя из их функций. Как правило, именно белки ответственны за функциональную активность мембран. К таким белкам относятся разнообразные ферменты, транспортные белки, рецепторы, канальные белки, белки, образующие водные поры (аквапорины), а также различные структурные и регуляторные белки, которые обеспечивают многообразные функции клеточных мембран. По биологической роли мембранные белки можно разделить на четыре группы:

1) белки-ферменты, обладающие каталитической активностью;

2) рецепторные белки, специфически связывающие те или иные вещества;

3) структурные белки;

4) белки, обеспечивающие межклеточные взаимодействия.

Белки-ферменты наиболее распространены среди всех мембранных белков. В их число входят как интегральные (мембранные АТФазы, выполняющие транспортную функцию), так и периферические (ацетилхолинэстераза, кислая и щелочная фосфатазы, РНКаза) белки. Транспортные белки создают устойчивые потоки определенных веществ и ионов через мембраны. Транспорт ионов приводит к возникновению трансмембранного потенциала во всех клетках, а так же к его изменениям в нервной и мышечной клетках. Последнее явление лежит в основе таких важнейших свойств этих тканей, как возбудимость и проводимость.

Рецепторными белками называют белки, специфически связывающие те или иные лиганды, участвующие в передаче сигналов от одних клеток к другим.Такая передача осуществляется различными способами. Часто рецепторы входят в состав более сложных мембранных комплексов, содержащих белки-исполнители. Например, в нервных и нервно-мышечных синапсах сигнальной молекулой (медиатором) является определенное низкомолекулярное вещество, а плазматическая мембрана содержит специальные рецепторные белки, соединенные с ионными каналами, изменяющие свои свойства при связывании рецептора с лигандами. Эта реакция обеспечивает проницаемость мембраны для различных ионов (натрия, калия, кальции, хлора) и формирует возбуждающий потенциал. Некоторые рецепторы (например, никотиновый холинорецептор) сами являются ионными каналами (за счет включения в рецепторный ансамбль дополнительных белковых субъединиц).

В ряде случаев рецепторный белок не является ионным каналом, но связан с внутриклеточным сигнальным каскадом, активация которого происходит при связывании с рецептором лиганда, несущего информацию. В результате активации таких рецепторов (их называют метаботропными, в противоположность ионотропным, регулирующим ионные потоки через мембрану) возникает каскад химических реакций, управляющих клеточными функциями через изменения метаболизма (отсюда и название этих рецепторов). Активация метаботропных рецепторов лигандами (их можно считать первичными сигнальными молекулами, или первичными мессенджерами) приводит к выработке в цитоплазме активируемой клетки вторичных сигнальных молекул (вторичных мессенджеров).

Структурные белки придают клеткам и органеллам определенную форму; обеспечивают те или иные механические свойства (например, эластичность) плазматической мембране; осуществляют связь мембраны с цитоскелетом, а в случае ядерной мембраны с хромосомами. Структурные мембранные белки, как правило, лишены ферментативных свойств (возможно они просто пока мало изучены в химическом отношении). Их исследование затрудняется главным образом двумя обстоятельствами. Во-первых, структурные белки «немы» - не обладают известной ферментативной активностью. Во-вторых, структурные белки имеют в составе своих молекул обширные гидрофобные участки. При очистке они образуют тесные ассоциаты друг с другом или с липидами, что усложняет их изучение.

Нейроспецифический белок В-50 - один из основных фосфорилируемых структурных белков плазматических мембран синаптических контактов. Методами иммунохимии установлено, что он локализован преимущественно в пресинаптических мембранах. Молекулярная масса белка 48 кПа. Он является эндогенным субстратом - зависимой протеинкиназы С. Активаторы протеинкиназы С стимулируют процесс синаптической передачи в срезах гиппокампа. Фосфорилирование белка В-50 приводит к увеличению времени возбужденного состояния синапса, что способствует удержанию ионных каналов в активированном (открытом) состоянии (в некоторых публикациях этот феномен называют состоянием проторенности синапса). Влияние фосфорилированного белка В-50 на метаболизм фосфоинозитидов может быть одной из причин этого феномена. Интересно, что в процессе старения организма интенсивность фосфорилирования белка В-50 в мозге снижается, что, возможно, и обусловливает снижение пластичности синапсов.

Еще одно доказательство роли процессов фосфорилирования белка В-50 в функционировании синапсов получено в экспериментах in vitro, подтвердивших, что нейропептид - фрагмент АКТГ1 _24 - в 10 раз более эффективно тормозит фосфорилирование В-50 в синаптических мембранах из септальной области мозга, чем в мембранах целого мозга.

В группу мембранных белков также входят множество белков-ферментов, образующих ионные каналы, - Na/К- и Са-АТФазы, рецепторные белки, синапсины и др.

Плазмин - сериновая протеиназа, в плазме крови действует в основном как тромболитический фермент, а также деградирует многие компоненты внеклеточного матрикса. В мозге плазмин вовлекается в осуществление многочисленных функций, таких как нейрональная пластичность, обучение и память. Активация плазминогеновой системы наблюдается в мозге во время и в первые дни после инсульта. При болезни Альцгеймера, напротив, происходит снижение уровня плазмина в тканях мозга.

Входящий в состав плазматических мембран нейронов плазмин находится в ассоциации с богатыми холестерином рафтами, которые считаются местом преимущественного образования амилоидного вета-А. Это свидетельствует о наличии функциональной связи между плазмином, холестерином и метаболизмом мозга.

Эндотепинконвертирующий фермент (ЕСЕ-1) является еще одним амилоиддеградирующим ферментом, который на 37% гомологичен НЕП по аминокислотной последовательности.ЕСЕ-1 тоже является мембраносвязанной цинкзависимой металлопротеазой, также как и НЕП он способен расщеплять большое число биологически активных веществ, включая брадикинин, нейротензин, ангиотензин-1 и В-цепь инсулина. В отличие от НЕП, ЕСЕ-1 существует в виде димеров, субъединицы которых соединены дисульфидной связью.

Эти две металлопротеазы (ЕСЕ-1 и НЕП) различаются и по чувствительности к ингибиторам. Для ингибирования НЕП требуются наномолярные концентрации тиорфана и фосфорамидона, в то время как ЕСЕ-1 ингибируется микромолярными концентрациями фосфорамидона и не чувствителен к тиорфану.

ЕСЕ-1 обнаружен во многих органах и тканях. Наиболее обогащены этим ферментом эндотелиальные клетки, он также экспрессируется в нервной ткани и мышцах. В гладкомышечных клетках ЕСЕ-1 находится в комплексе с альфа-актиновыми филаментами.

В настоящее время известны четыре изофоры ЕСЕ-1 человека (1a, 1b, 1c и 1d), которые не имеют существенных каталитических отличий, но различаются по внутриклеточной локализации. Изоформы 1a, 1b, 1c и 1d находятся на поверхности клетки, а ЕСЕ-1 является внутриклеточной формой, локализованной в аппарате Гольджи.

Обнаружен еще один белок, подобный ЕСЕ-1, который локализован преимущественно в мозге и в незначительных количествах - в эндотелиальных и гладкомышечных клетках. Его первичная структура на 59°/о идентична аминокислотной последовательности ЕСЕ-1. Он обозначается как ЕСЕ-2 и отличается от ЕСЕ-1 более кислым рН-оптимумом.


| | | | | | | | | 10 |