Статья 15 февраля олега лосева. Физик Олег Владимирович Лосев известен миру благодаря двум своим открытиям

Благодаря забытому ныне физику Олегу Лосеву у СССР был шанс создать полупроводниковые технологии намного раньше, чем США. В списке государств - лидеров в области полупроводниковых технологий Россия не значится. Между тем анализ истории науки однозначно свидетельствует в пользу того, что при более удачном стечении обстоятельств у Советского Союза были отличные шансы опередить остальной мир в этой технологической гонке.

В этом году исполнилось 91 год со дня создания первого в мире полупроводникового прибора, усиливавшего и генерировавшего электромагнитные колебания. Автором этого важнейшего изобретения был наш соотечественник, девятнадцатилетний сотрудник Нижегородской радиолаборатории Олег Владимирович Лосев. Его многочисленные открытия намного опередили время и, как это, к сожалению, часто случалось в истории науки, были практически забыты к моменту начала бурного развития полупроводниковой электроники.

Физик Олег Владимирович Лосев известен миру благодаря двум своим открытиям: он первый в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока.

К сожалению, ученый не получил своевременно объективной оценки своих заслуг со стороны соотечественников. А ведь именно его работы подготовили открытие «транзисторного эффекта», за что профессор Иллинойского университета Джон Бардин в 1956 г. получил свою первую Нобелевскую премию. Да и в основе достижений наших отечественных ленинских и нобелевских лауреатов 1964 г. Николая Басова и Александра Прохорова и нобелевского лауреата 2001 г. Жореса Алфёрова лежат результаты фундаменталъно-прикладных исследований и разработок скромного подвижника науки ж техники — О.В.Лосева. Однако не много найдется людей, кто хоть вскользь прилюдно упомянул бы имя своего скромного предшественника. Пожалуй, только его старший коллега Б.А. Остроумов на сессии ВНТОРЭС в 1952 г. выступил с большим докладом «Советский приоритет в деле создания кристаллических электронных реле по работам О.В.Лосева». По этому докладу сессия предложила издать труды Лосева, доработать его научное наследие и внедрять полупроводники в практику. И уже в 1954 г. Был организован Институт полупроводников АН СССР, директором которого стал один из бывших научных руководителей О.В.Лосева — академик А. Ф. Иоффе.

Олег Лосев родился в Твери 10 мая 1903 г. По воспоминаниям друзей и знакомых Олега, отец его был конторский служащий на вагоностроительном заводе, мать — домохозяйка. О тверских его близких родственниках и знакомых пока сведении нет. Точно неизвестно как учился Олег вообще, но известно, что его очень интересовала физика, а его учитель физики Вадим Леонидович Лёвшин (1896-1969) — впоследствии академик, лауреат Сталинской премии 1951 г. — привил своему ученику интерес к научным исследованиям. «Заболел» радиотехникой Олег Лосев в 1916 г., после одной из первых лекций нового начальника Тверской радиостанции внешних сношений, штабс-капитана Владимира Лещинского. Тогда же он познакомился и с его помощником — поручиком Михаилом Бонч-Бруевичем и профессором Рижского политехникума Владимиром Лебединским. Последний часто приезжал в Тверь, чтобы поддерживать своих талантливых учеников и единомышленников в их новаторских устремлениях. Стал частым гостем на радиостанции и школьник Олег Лосев.

Тверская радиостанция внешних сношений появилась в Твери в 1914 году, т.е. в начале первой мировой войны для обеспечения оперативной связи России с её союзниками Англией и Францией. Тверская станция была приёмной и соединялась прямым проводом с обеими российскими столицами, где в Царском селе (под Петербургом) и на Ходынском поле (в Москве) также в спешном порядке были построены две однотипные стокиловаттные передающие станции искрового телеграфа. На территории станции были и два деревянных барака. Аппаратура радиостанции питалась от аккумуляторных батарей, для заряда которых в техническом оснащении станции был предусмотрен бензодвижок с динамо-машиной. Потому электроосвещение на станции действовало только тогда, когда подзаряжался аккумулятор. Кроме того, собственно аппаратура станции была весьма ненадёжна, и, прежде всего, из-за невысокого качества тогдашних, к тому же, и очень дорогих французских радиоламп. Однако ещё хуже были лампы отечественного производства – «лампы Папалекси», которые в небольших количествах выпускались питерским заводом РОБТиТ под наблюдением самого разработчика.

Собственная радиолаборатория для исследований, экспериментов и изготовления собственных пустотных (катодных) реле — так тогда назывались радиолампы — хотя бы для нужд собственной радиостанции на Тверской радиостанции появилась по инициативе Бонч-Бруевича. Для этого он выпросил в физическом кабинете гимназии ненужный там вакуумный насос, кое-что из оборудования где-то ещё выпросил во временное пользование, на собственные деньги купил у местного аптекаря разнокалиберных стеклянных и резиновых трубок ртути для пароструйного насоса Ленгмюра, а в магазине скупил едва ли ни все осветительные электролампочки. Это потом ему удалось тоже выпросить на питерском заводе «Светлана» моток бракованной вольфрамовой проволоки, а на первых порах в качестве нитей накала в своих первых пустотных реле он использовал нити накала осветительных электроламп.

Когда в 1915 г. был изготовлен первый образец пустотного реле, Бонч-Бруевич собрал на своем столе макет испытательного радиоприёмника и подключил к нему свою первую самодельную радиолампу. Однако баллон опытного образца плохо держал даже не очень глубокий вакуум, потому лампа могла работать только при непрерывной откачке воздуха из нее, т.е. при непрерывной работе насосов, а для вращения электромоторов требовался ток. Первую небольшую партию ламп Бонч-Бруевич сумел изготовить к осени 1915 г. Правда, это были пока газонаполненные приборы, но с весны 1916 г. тверские умельцы наладили изготовление двуцокольных вакуумных ламп со стальными электродами, которые по всем параметрам превзошли французские лампы промышленного производства. Так, если французская лампа имела рабочий ресурс 10 часов и стоила 250 рублей, то тверская лампа при ресурсе 4 недели стоила лишь 32 рубля. Это ж была та самая «бабушка» последующих конструкций радиоламп Бонч-Бруевича.

Кустарное изготовление радиоламп — дело трудоёмкое, хлопотное и небезопасное, но личный состав станции понимал важность этого дела, потому в лаборатории с энтузиазмом трудились все свободные в данное время от своей вахты и службы. Так что Олегу Лосеву приходилось видеть на Тверской радиостанции не только керосиновые лампы, но и не раз наблюдать, как ловко манипулируют раскалёнными докрасна в керосиновых горелках стеклянными пузырями, одновременно ногами, посредством кузнечных мехов, нагнетая воздух в свои горелки. Став заядлым радиолюбителем, и Олег Лосев устроил дома радиолабораторию. Занимаясь дома всякими поделками, он не чурался и мальчишеских шалостей. Так, например, он иногда звонил по телефону какому-нибудь наугад выбранному абоненту и, услышав его ответ, прикладывал к микрофону какую-нибудь очередную изготовленную им электрическую пищалку или гуделку и представлял себе, как при этом «радуется» на другом конце провода случайный и незнакомый «собеседник».

После Октябрьской революции Тверская радиостанция потеряла своё военное значение и вместе с шестью другими крупнейшими станциями была передана в апреле 1918 г. из Военного ведомства в ведение Наркомата почт и телеграфа. Слух о легендарной «внештатной» радиолаборатории докатился в Москву до самого Ленина. 19 июня 1918 г. коллегия Наркомпочтеля приняла постановление об организации тверской радиолаборатории (ТРЛ) с мастерской со штатом 59 человек при Тверской радиостанции для разработки и изготовления различных радиотехнических приборов и, прежде всего, необходимого количества катодных реле, т.е. радиоламп. Управляющим лабораторией 26 июня стал начальник станции В.М. Лещинский. Ведущим работникам Тверской радиостанции и радиолаборатории при ней были установлены высокие оклады и предоставлены хорошие продовольственные пайки. Однако остальные производственно-бытовые условия в ТРЛ не изменились, потому и возник вопрос о необходимости передислокации ТРЛ в другое место и даже в другой город. Вариантов было много, но выбор пал на Нижний Новгород, поскольку там для размещения радиолаборатории было предложено большое каменное трёхэтажное здание с подвалом, двором и надворными постройками, как и в Твери — на крутом берегу Волги.

С убытием ТРЛ в Нижний Новгород, опустела Тверская радиостанция и «осиротел» Олег Лосев, но увлечений своих не растерял, а потому, летом 1920 г., окончив Тверское училище, решил поступать в Москве в институт связи. А в Москве в сентябре того же года проходил 1-й Всероссийский радиотехнический съезд. Конечно, пропустить такое событие Лосев не мог. Он сумел пробраться на съезд, где и встретил своих старых знакомых: Лещинского В. М., Бонч-Бруевича М.А. и Лебединского.

В. К. Лебединский и пригласил Лосева на работу в НРЛ. Молодой радиолюбитель перед соблазном не устоял и вскоре появился в Нижнем. Новгороде на Откосе в заветном доме № 8. Здесь и привелось Лосеву заниматься исследованием самых ненадёжных и самых капризных элементов тогдашних безламповых приёмников — кристаллических детекторов.

Возможности для экспериментов были безграничными, только меняй кристаллы да материал иглы. Главное – цель. И тут оказалось, что недостаток знаний не всегда недостаток – нередко из-за этого и появляются открытия, была бы удача. Приступая к исследованиям, О. В. Лосев исходил из принципиально ошибочной посылки, что поскольку «некоторые контакты… между металлом и кристаллом не подчиняются закону Ома, вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». (В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно; обязателен падающий участок – да Лосев этого не знал!) Удивительно, но у некоторых кристаллов он обнаружил искомые активные точки, обеспечивающие генерацию высокочастотных сигналов. Особенно эффективной оказалась пара «цинкит – угольное острие», которая при напряжениях менее 10 В позволяла получать радиосигналы с длиной волны вплоть до 68 м. Понятно, что сбивая генерацию, можно было реализовать и усилительный режим. Статья О. В. Лосева о детекторе-генераторе и детекторе-усилителе появилась в ТиТбп в июне 1922 г. К чести Лосева отметим, что в ней он разъясняет обязательность наличия падающего участка вольтамперной характеристики контакта. Разъясняет очень подробно, рассматривая вопрос и качественно и аналитически. По тону чувствуется, что разъясняет не только читателю, но прежде всего самому себе. Это характерно и для его последующих статей. В них он всегда не только исследователь, по и прилежный студент курсов самообразования. Замечательно, что рядом с Лосевым оказался В. К. Лебединский, который отчетливее, чем его молодой сотрудник, понял, что сделано открытие. Профессор сходу попытался дать объяснение наблюдаемому явлению, занялся этим и сам первооткрыватель, но ничего путного тогдашняя фундаментальная наука подсказать им не могла. В конце концов Лосев довольствовался лишь гипотезой: при достаточно большом токе в зоне контакта возникает некий электронный разряд наподобие вольтовой дуги, но без разогрева. Этот разряд и закорачивает высокое сопротивление контакта, обеспечивая генерацию. Похоже, вплоть до конца 1920-х гг. ему казалось, что процесс протекает в атмосфере над поверхностью кристалла. (По современным представлениям имело место сочетание лавинного пробоя с тиристорным эффектом.)

Конечно же В. К. Лебединский и М. А. Бонч-Бруевич обратили внимание на невоспроизводимость эффекта и на то, что, немного поработав, детекторы-генераторы «скисали», поэтому о какой-либо конкуренции с ламповой электроникой как генеральным направлением не могло быть и речи, но практическая значимость открытия была огромной.

И уже 13 января 1922 г. Лосев в детекторе из цинкита обнаружил активные свойства, т.е. способность кристаллов в определённых условиях усиливать и генерировать электрические колебания, а построенный Лосевым в 1922 г. радиоприёмник с генерирующим диодом – «кристадин» — принёс молодому учёному и изобретателю всемирную известность

Регенеративный приемник “Кристадин”

В те годы радиолюбительство начало принимать массовый характер. Вышло постановление правительства о его развитии, названное «законом о свободе эфира». Электронных ламп не хватало, и они были дороги, да им еще требовался и специальный источник электропитания, а схема Лосева могла работать от трех-четырех батареек для карманного фонарика! В серии последующих статей Олег Владимирович описал методику быстрого отыскивания активных точек на поверхности цинкита, заменил угольное острие металлической иглой, дал рецепты по обработке самих кристаллов и, разумеется, предложил целый ряд практических схем радиоприемников. И на все эти технические решения получил патенты (всего 7), начиная с «Детекторного приемника-гетеродина», заявленного в декабре 1923 г. Кто-то придумал звучное и вполне обоснованное название такому, полностью твердотельному приемнику – кристадин, образованное из сочетания кристалл + гетеродин. Очень скоро, используя детекторы-генераторы, радиолюбители начали делать и радиопередатчики, пригодные для связи на несколько километров. Это был подлинный триумф, популярные брошюры о кристадине расходились массовыми тиражами, а когда их перевели на английский и немецкий, О. В. Лосев получил широкое европейское признание. В письмах «оттуда» его величали не иначе как профессором, да и в НРЛ его карьера удалась: с первоначальной должности «служителя» (что-то вроде мальчика на побегушках) он шагнул в лаборанты, женился (неудачно) и почти перестал голодать.

Зарубежные научные журналы называли кристадин Лосева «сенсационный изобретением», а самого девятнадцатилетнего учёного – «профессором». После изобретения «Кристадина» Лосев стал едва ли ни «богом» радиолюбителей. В период с 1924 и по 1928 годы он получил от радиолюбителей более 700 писем и ни одно из них не оставил без ответа.

Устройство Лосева позволило не только принимать радиосигналы на больших расстояниях, но и передавать их. Молодому исследователю удалось получить пятнадцатикратное усиление сигнала в головных телефонах (наушниках) по сравнению с обычным детекторным приемником. Радиолюбители, высоко оценившие изобретение Лосева, писали в различные журналы, что «при помощи цинкитного детектора в Томске, например, можно слышать Москву, Нижний и даже заграничные станции». По лосевской брошюре «Кристадин» создавали свои первые приемники тысячи энтузиастов радиосвязи. Более того, кристадины можно было просто купить как в России (по цене 1 руб. 20 коп.), так и за рубежом.

Продолжая исследования, Лосев в 1923 г. на карборундовом детекторе обнаружил ещё одну разновидность активности кристаллов: холодное безинерционное свечение, т.е. способность полупроводников генерировать электромагнитные излучения в световом диапазоне волн. Раньше такого явления он не наблюдал, но прежде и использовались другие материалы. Карборунд (карбид кремния) был испробован впервые. Лосев повторил опыт — и снова полупрозрачный кристалл под тонким стальным острием засветился. Так, было сделано одно из перспективнейших открытий электроники — электролюминесценция полупроводникового перехода. Обнаружил Лосев явление случайно или тому были научные предпосылки, сейчас судить трудно. Так или иначе, но молодой талантливый исследователь не прошел мимо необычного явления, не отнес его в разряд случайных помех, напротив, обратил самое пристальное внимание, угадал, что оно базируется на еще неизвестном экспериментальной физике принципе. В мировой физике это явление получило название «электролюминесценция» или просто – «свечение Лосева». Практическое использование эффекта свечения Лосева началось в конце пятидесятых годов. Этому способствовало освоение полупроводниковых приборов: диодов, транзисторов, тиристоров. Не полупроводниковыми оставались только элементы отображения информации — громоздкие и ненадежные. Поэтому во всех развитых в научно-техническом отношении странах велась интенсивная разработка полупроводниковых светоизлучающих приборов

А в 1927-1928 годах Олег Владимирович сделал и третье своё открытие: емкостный фотоэффект в полупроводниках, т.е. способность кристаллов преобразовывать световую энергию в электрическую (принцип действия солнечных батарей).

В то время ещё никто не мог дать научного объяснения физическим явлениям, открытым Лосевым в полупроводниках, хотя впервые такую попытку тогда и предпринял коллега и друг Лосева — Георгий Александрович Остроумов (1898-1985), прибывший на работу в НРЛ из Казани в 1923 г вместе со своим старшим братом Борисом Александровичем Остроумовым (1687-1979). Однако попытка эта успехом не увенчалась, поскольку тогдашняя физика ещё не располагала научными фактами и знаниями, которые необходимы были для разработки этой теории. Знания такие появились только в конце второй мировой война, а кристаллический гетеродин Лосева (кристадин) подготовил открытие транзисторного эффекта в 1947 г. американскими учёными Бардиным и Браттейном. Американец Дестрио продолжал исследования «свечения Лосева». Кстати, все зарубежные учёные признавали приоритет открытий Лосева в области полупроводников и, кажется, лишь один Коллац имел своё особое мнение.

Повзрослевший Лосев стал не только более сосредоточенным, но и менее общительным. Во время работы ничто ему не мешало и не могло отвлекать от дела. Когда же ему приходилось что-то мастерить, т.е. работать больше руками, чем головой, он почти всегда что-нибудь тихонъко напевал или насвистывал. По воспоминаниям его коллег, физик Лосев был и Лосевым-романтиком. Однако на эти увлечения у него не оставалось времени: главным в его жизни была работа, работа и работа. К тому же он был и студентом-заочником Нижегородского университета, который он закончил, сдал все экзамены, но из-за какой-то формальности диплома не получил. Хотя, кажется, это его мало беспокоило. Может, по молодости, по житейской неопытности он считал, что главное — это реальные дела, а вовсе не канцелярская справка с печатью. А может, и в силу своей глубокой убеждённости, он, как физик, не мог смириться с тем, что реальным миром управляет не сущность вещей и явлений, а бюрократическое крючкотворство на основе юридических условностей.

Бурное развитие радиотехники во второй половине 20-х годов минувшего века потребовало коренной перестройки всего радиодела в стране. Так, летом 1928 г. в Ленинграде на специальном совещании представителей соответствующих ведомств было вынесено решение объединить НРЛ с ленинградской ЦРЛ (Центральной радиолабораторией), назначить научным руководителем объединённой ЦРД М.А.Бонч-Бруевича и поручить ему установить тематику исследовательских работ в соответствии с новыми научно-техническими требованиями. Сотрудникам НРЛ было предложено переехать в Ленинград для продолжения работы в ЦРЛ. К тому времени О.В. Лосев уже был женат, но его жена¬ Татьяна Чайкина не захотела оставлять Нижний Новгород. В Ленинград Лосев уехал один.

В ЦРЛ О.В.Лосев продолжал свои исследования, начатые в НРЛ. 25 марта 1931 г. лаборант 1-го разряда Лосев был переведён в вакуумную лабораторию Б.А. Остроумова. В эту же лабораторию была «влита» и группа сотрудников, которая разрабатывала тему, достаточно близкую к теме исследований Лосева (меднозакисные выпрямители, детекторы, вентильные фотоэлементы и т.д.). Одно время в этой группе работал и Дмитрий Маляров. Ведущим исполнителем этой темы была В.Н. Лепешинская, а её научным руководителем и стал сам Б.А.Остроумов. Значит, его научное общение с Лосевым еще в НРЛ не пропало даром, а о работах Лосева он как-то при случае рассказал А.Ф. Иоффе (1880-1960). Академик проявил к Лосеву живой интерес и стал привлекать его к исследованиям в области квантовой теории излучений. Под его руководством Лосев работал в целевом институте № 9 и в ГФТИ и продолжал серьезные исследования на переднем крае науки. Без вузовского диплома Лосев часто числился в документах просто лаборантом. Так Олег Владимирович поступил на работу в 1-й Ленинградский медицинский институт, где ему на кафедре физики предложили должность ассистента. Однако Б.А.Остроумов, ставший 15 июня 1937 г. кандидатом физико-математических наук без защиты диссертации и профессором, проявил живое участие в судьбе Лосева. Не забыл о нём и академик Иоффе А.Ф. По его представлению в 1938 г. Учёный совет Ленинградского политехнического института присудил Олегу Владимировичу Лосеву учёную степень, кандидата физико-математических наук и тоже без защиты диссертации. С получением кандидатского диплома. О.В.Лосев обрёл право на педагогическую работу и с осени 1938 г. стал преподавать физику студентам-медикам, не оставляя и научной работы.

Когда началась Отечественная война и немецкие войска подошли к Ленинграду, О.В.Лосев решил эвакуировать только родителей, но удалось ему отправить к родственникам в только отца: мать не могла оставить своего сына одного в прифронтовом городе. Лосев продолжал работу на кафедре физики. Там он разработал систему противопожарной сигнализации, электрический стимулятор сердечной деятельности и портативный обнаружитель металлических предметов (пуль и осколков) в ранах. Очень скоро прифронтовой Ленинград превратился в блокадный, и Лосев стал донором. В начале января 1942 г. от голода умерла, его мать, и Олег Владимирович пожалел, что в свое время отказался от эвакуации. А через несколько дней — 22 января 1942 года — в госпитале мединститута от истощения умер и сам О.В. Лосев. 16 февраля 1942-го от голода умер его друг и коллега по НРЛ и ЦРЛ Д.Е. Маляров, тоже успевший внести свой вклад в создание совместно с Н.Ф. Алексеевым в 1939 г. всемирно известного многорезонаторного магнетрона — прибора для генерирования мощных колебаний СВЧ.

О.В. Лосев, на десятилетия опередивший современную ему физику, занимался не только фундаментальной стороной науки, но и пытался доводить результаты своих исследований до практического применения, что подтверждается его 15-ю авторскими свидетельствами на изобретения, среди которых два — на «кристадины». Он разработал 6 конструкций радиоприёмников, в том числе и один ламповый.

В автобиографии 1939 г. О.В. Лосев назвал имя своего предшественника, отметив, что усилительные свойства кристаллических (галеновых) детекторов впервые обнаружил не он, а некий иностранный учёный ещё в 1910 г. Так что свою заслугу Лосев видел в основном в изобретении кристадинных приёмников, которые и произвели в мире фурор. Кристадины Лосева на длине волны 24 метра работали на нескольких радиостанциях Наркомпочтеля, за что их автор был дважды — в 1922 и в 1925 годах — удостоен премий НКПТ. А в 1931 г. Лосев получил премию за «свечение Лосева» и фотоэффект. С 1931 по 1934 годы О.В.Лосев трижды выступал с докладами о своих работах на Всесоюзных конференциях в Ленинграде, Киеве и Одессе. Также в автобиографии 1939 г. Лосев подтвердил, что с открытием усилительных свойств кристаллов, появилась реальная возможность создания полупроводникового аналога лампового триода, что и реализовали американские учёные Барцин и Браттейн в 1947 г.

Почему работы Лосева не включены в знаменитые исторические очерки по истории твердотельных усилителей - это очень интересный вопрос. Ведь кристадиновые радиоприемники и детекторы Лосева в середине 20−х годов демонстрировались на основных европейских радиотехнических выставках.

Есть такой биографический справочник - «Физики» (автор Ю. А. Храмов), он вышел в 1983 году в издательстве «Наука». Это самое полное собрание автобиографий отечественных и зарубежных ученых, изданное в нашей стране. Имени Олега Лосева в этом справочнике нет. Ну что ж справочник не может вместить всех, вошли только самые достойные. Но в той же самой книге содержится раздел «Хронология физики», где приведен перечень «основных физических фактов и открытий» и среди них: «1922 г. - О. В. Лосев открыл генерацию электромагнитных колебаний высокой частоты контактом металл-полупроводник».

Таким образом, в этой книге работа Лосева признана одной из самых важных в физике XX века, но места для его автобиографии не нашлось. В чем тут дело? Ответ очень прост: все советские физики послереволюционного периода заносились в справочник по рангу - включались только члены-корреспонденты и академики. Лаборанту же Лосеву дозволялось делать открытия, но не греться в лучах славы. При этом имя Лосева и значение его работ было хорошо известно сильным мира сего. В подтверждение этих слов процитируем выдержку из письма академика Абрама Иоффе Паулю Эренфесту (16 мая 1930 г.): «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2−6 вольт. Граница свечения в спектре ограничена».

В 1947 году (к тридцатилетию Октябрьской революции) в нескольких выпусках журнала «Успехи физических наук» были опубликованы обзоры развития советской физики за тридцать лет, такие как: «Советские исследования по электронным полупроводникам», «Советская радиофизика за 30 лет», «Советская электроника за 30 лет». О Лосеве и его исследованиях кристадина упоминается лишь в одном обзоре (Б. И. Давыдова) - в части, посвященной фотоэффекту, отмечается: «В заключение нужно еще упомянуть работы О. В. Лосева по свечению кристаллического карборунда и по ‘обратимому’ вентильному фотоэффекту в нем (1931−1940)». И ничего сверх этого. (Отметим, к слову, что большинство результатов, которые в тех обзорах оценивались как «выдающиеся», сегодня никто и не вспоминает.)

Есть одно очень символическое совпадение: Лосев умер от голода в 1942 году в блокадном Ленинграде, а его работа по кремнию оказалась потерянной, и в том же 1942 году в США компании Sylvania и Western Electric начали промышленное производство кремниевых (а чуть позже и германиевых) точечных диодов, которые использовались в качестве детекторов-смесителей в радиолокаторах. Через несколько лет работы в этой области привели к созданию транзистора. Смерть Лосева совпала по времени с рождением кремниевой технологии.

источники
http://www.expert.ru/printissues/expert/2002/15/15ex-nauk/
http://housea.ru/index.php/history/50892
http://www.scienceforum.ru/2013/288/5765

А я вам напомню еще некоторых наших соотечественников: , , а так же вспомните про

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

О. В. Лосев – изобретатель кристадина и светодиода

К 100-летию со дня рождения

Ю. Р. Носов

Олег Владимирович Лосев обессмертил свое имя двумя открытиями: он первый в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока.

О. В. Лосев родился 10 мая 1903 г. в Твери в семье конторского служащего. В раннем возрасте у него проявилась склонность к физике и технике. В годы Первой мировой войны в городе была сооружена военная радиоприемная станция, которая получала послания от союзников России по Антанте и отправляла их телеграфом в Петроград и Москву. Однажды в 1917 г. школьнику Олегу довелось побывать на публичной лекции начальника радиостанции о "беспроволочном телеграфе". Тогда этот термин считался более понятным, чем "радио", и в то же время – более научным. Напомним, что и Нобелевская премия 1909 г. была присуждена Г. Маркони и К. Ф. Брауну "за вклад в создание беспроволочной телеграфии". (Изобретатель радио, наш соотечественник А. С. Попов к тому времени уже три года как скончался). После этой лекции судьба О. В. Лосева решилась. Он стал частенько бывать на радиостанции, со всеми там перезнакомился, влюбился в радиотехнику.

При радиостанции благодаря энтузиазму сотрудников образовалась "внештатная" вакуумная лаборатория, в которой началась разработка радиоламп под руководством М. А. Бонч-Бруевича, будущего профессора и мэтра электроники, а в ту пору энергичного и высокообразованного офицера-электротехника. На станцию нередко приезжал из Москвы профессор В. К. Лебединский, известный специалист в области естественных наук, их талантливый пропагандист и популяризатор. Опытный педагог сразу же разглядел призвание Лосева и стал всячески поощрять его любознательность.

Шел 1918 год, страну захлестнула Гражданская война, но у новой власти хватило прозорливости и политической воли, чтобы ускорить развитие радиотехники: в подчинении Наркомата почт и телеграфов (предшественника Минсвязи) была создана Нижегородская радиолаборатория (НРЛ). Ее костяк составила тверская группа во главе с М. А. Бонч-Бруевичем. В Нижний она перебралась еще в августе 1918 г. и к ноябрю завершила разработку первой, которую в стране начали выпускать серийно, приемно-усилительной лампы ПР-1 ("пустотное реле, первое"). Другое направление работ возглавил приехавший из Петрограда профессор В. П. Вологдин, создатель машин высокой частоты. В. К. Лебединский начал выпуск двух специальных журналов по радио: серьезного – "Телеграфия и телефония без проводов" (ТиТбп) и популярного – "Радиотехник". Фактически НРЛ стала первым в стране научно-исследовательским институтом радиотехники и электроники.

После окончания школы в 1920 г. и неудачного опыта поступления в Московский институт связи О. В. Лосев вполне предсказуемо оказался в НРЛ под начальством В. К. Лебединского. Для него началась новая увлекательная жизнь, в которой "25 часов в сутки" были отданы любимой радиотехнике. Он и ночевал в лабораторном здании на лестничной площадке перед чердаком – в городе на Волге у него не было ни семьи, ни комнаты, ни быта. Но О. В. Лосев готов был поступиться всем, только бы не отказываться от творчества. После выполнения обязательных по лаборатории работ он стал заниматься самостоятельным экспериментированием с кристаллическими детекторами. Этот выбор был не случаен. Дело в том, что общаясь с крупными учеными и многое перенимая у них, Олег Владимирович всю жизнь оставался ярко выраженным индивидуалистом. Он любил и умел работать в одиночку и головой и руками. Пойти "на электронные лампы" означало получить свой ограниченный участок работы, частичку от целого. А с кристаллическими детекторами каждый радиолюбитель фактически проводил самостоятельное исследование, когда перемещал контактную иглу по поверхности кристалла, отыскивал точку, наиболее чувствительную для приема радиосигналов. Важность исследования и совершенствования детекторов несомненна. Со времен А. С. Попова и К. Ф. Брауна эти "хлипкие" устройства с дрожащими иголочками оставались основными элементами входных цепей радиоприемников, хотя имели невысокую чувствительность и избирательность и не отличались стабильностью.

Возможности для экспериментов были безграничными, только меняй кристаллы да материал иглы. Главное – цель. И тут оказалось, что недостаток знаний не всегда недостаток – нередко из-за этого и появляются открытия, была бы удача. Приступая к исследованиям, О. В. Лосев исходил из принципиально ошибочной посылки, что поскольку "некоторые контакты... между металлом и кристаллом не подчиняются закону Ома, вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания". (В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно; обязателен падающий участок – да Лосев этого не знал!) Удивительно, но у некоторых кристаллов он обнаружил искомые активные точки, обеспечивающие генерацию высокочастотных сигналов. Особенно эффективной оказалась пара "цинкит – угольное острие", которая при напряжениях менее 10 В позволяла получать радиосигналы с длиной волны вплоть до 68 м. Понятно, что сбивая генерацию, можно было реализовать и усилительный режим. Статья О. В. Лосева о детекторе-генераторе и детекторе-усилителе появилась в ТиТбп в июне 1922 г. К чести Лосева отметим, что в ней он разъясняет обязательность наличия падающего участка вольтамперной характеристики контакта. Разъясняет очень подробно, рассматривая вопрос и качественно и аналитически. По тону чувствуется, что разъясняет не только читателю, но прежде всего самому себе. Это характерно и для его последующих статей. В них он всегда не только исследователь, по и прилежный студент курсов самообразования. Замечательно, что рядом с Лосевым оказался В. К. Лебединский, который отчетливее, чем его молодой сотрудник, понял, что сделано открытие. Профессор сходу попытался дать объяснение наблюдаемому явлению, занялся этим и сам первооткрыватель, но ничего путного тогдашняя фундаментальная наука подсказать им не могла. В конце концов Лосев довольствовался лишь гипотезой: при достаточно большом токе в зоне контакта возникает некий электронный разряд наподобие вольтовой дуги, но без разогрева. Этот разряд и закорачивает высокое сопротивление контакта, обеспечивая генерацию. Похоже, вплоть до конца 1920-х гг. ему казалось, что процесс протекает в атмосфере над поверхностью кристалла. (По современным представлениям имело место сочетание лавинного пробоя с тиристорным эффектом.)

Конечно же В. К. Лебединский и М. А. Бонч-Бруевич обратили внимание на невоспроизводимость эффекта и на то, что, немного поработав, детекторы-генераторы "скисали", поэтому о какой-либо конкуренции с ламповой электроникой как генеральным направлением не могло быть и речи, но практическая значимость открытия была огромной.

В те годы радиолюбительство начало принимать массовый характер. Вышло постановление правительства о его развитии, названное "законом о свободе эфира". Электронных ламп не хватало, и они были дороги, да им еще требовался и специальный источник электропитания, а схема Лосева могла работать от трех-четырех батареек для карманного фонарика! В серии последующих статей Олег Владимирович описал методику быстрого отыскивания активных точек на поверхности цинкита, заменил угольное острие металлической иглой, дал рецепты по обработке самих кристаллов и, разумеется, предложил целый ряд практических схем радиоприемников. И на все эти технические решения получил патенты (всего 7), начиная с "Детекторного приемника-гетеродина", заявленного в декабре 1923 г. Кто-то придумал звучное и вполне обоснованное название такому, полностью твердотельному приемнику – кристадин, образованное из сочетания кристалл + гетеродин. Очень скоро, используя детекторы-генераторы, радиолюбители начали делать и радиопередатчики, пригодные для связи на несколько километров. Это был подлинный триумф, популярные брошюры о кристадине расходились массовыми тиражами, а когда их перевели на английский и немецкий, О. В. Лосев получил широкое европейское признание. В письмах "оттуда" его величали не иначе как профессором, да и в НРЛ его карьера удалась: с первоначальной должности "служителя" (что-то вроде мальчика на побегушках) он шагнул в лаборанты, женился (неудачно) и почти перестал голодать.

В 1928 г. в целях расширения научной и промышленной базы радиодела по решению правительства тематика НРЛ (вместе с сотрудниками) была передана в ленинградскую Центральную радиолабораторию (ЦРЛ), которая, в свою очередь, беспрерывно реорганизовывалась, строилась, оснащалась. Вывески менялись, а Лосев занимался одним и тем же – полупроводниками. Его руководителем стал профессор Б. А. Остроумов, заведующий вакуумно-физической лабораторией, разместившейся в одном из новых зданий ЦРЛ на Каменном острове. Лишь после того, как ЦРЛ преобразовалась в Институт радиовещательного приема и акустики (ИРПА), и тематика резко сузилась, Лосев был вынужден уйти на кафедру физики Первого медицинского института.

В ЦРЛ работали выдающиеся ученые. Кроме тех, кто переехал из НРЛ, назовем Л. И. Мандельштама, Н. Д. Папалекси, А. А. Расплетина, А. Н. Щукина, Д. А. Рожанского, А. А. Пистолькорса, В. И. Сифорова. Многие из них стали академиками и членами-корреспондентами Академии наук.

Ближайшим коллегой О. В. Лосева еще с нижегородского периода был Д. Е. Маляров, прославившийся изобретением (с Н. Ф. Алексеевым) в 1939 г. многокамерного магнетрона – основы будущих радиолокаторов. Пересекались пути Лосева и с московским студентом-стажером В. А. Котельниковым (будущим академиком).

О такой концентрации светил радиотехники и электроники трудно было даже мечтать! Но в ленинградский период жизни интересы Олега Владимировича уже были далеки от кристадина, да и от практической радиотехники. Еще при ранних исследованиях детекторов в 1923 г. он заметил, что при пропускании тока некоторые из них испускают свет. Особенно ярко светились карборундовые детекторы. В Ленинграде Лосев и занялся изучением и объяснением этой электролюминесценции, в значительной степени в содружестве и при поддержке Физико-технического института, возглавляемого академиком А. Ф. Иоффе. Эта страница научной жизни О. В. Лосева, посвященная физике твердого тела, оказалась еще более яркой, чем изобретение кристадина, и заслуживает отдельного подробного описания. Здесь лишь отметим, что за исследование свечения Лосеву в 1938 г. без защиты диссертации была присуждена степень кандидата физико-математических наук (а ведь он так и не получил высшего образования).

О. В. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные безвакуумные источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Полученные им два авторских свидетельства на "Световое реле" (первое заявлено в феврале 1927 г.) формально закрепили за нашей страной приоритет в области светодиодов.

Когда началась Великая отечественная война, Лосев не уехал в эвакуацию, о чем вскоре, осознав бесцельность жертвы, горько пожалел. Полная самоотдача институтским делам, наступивший холод и голод сделали свое дело: 22 января 1942 г. на 39-ом году жизни Олег Владимирович Лосев скончался от истощения в блокадном Ленинграде. Спустя месяц там же от голода умер и его друг-одногодок Д. Е. Маляров.

Открытия О. В. Лосева намного обогнали свое время: тогда не было ни достаточно чистых материалов, ни теории полупроводников, чтобы осознать открытое и добиться воспроизводимого повторения, а главное – развивать дальше. К сожалению, преждевременность открытия, как правило, оборачивается драмой не только для автора, но и для самого открытия – оно напрочь забывается, а когда, наконец, приходит "его время", открывается заново. В значительной степени этот драматизм проявился и в судьбе О. В. Лосева, но в главном ему повезло: кристадин и свечение Лосева останутся в истории техники и в человеческой памяти навсегда.

Литература

  1. Лосев О. В. У истоков полупроводниковой техники. – Л.: Наука, 1972.
  2. Нижегородские пионеры советской радиотехники. – М., Л.: Наука, 1966.
  3. Центральная радиолаборатория в Ленинграде. Под ред. И. В. Бренева. – М.: Сов. Радио, 1973.

Имя Олега Владимировича Лосева сегодня известно разве что узкому кругу специалистов. А жаль: его вклад в науку, в развитие радиотехники таков, что дает право этому ученому-подвижнику на благодарную память потомков.

Ученик пятого класса реального училища дореволюционной Твери Олег Лосев что ни вечер тихо копошился в своей полутайной домашней радиолаборатории, которую оборудовал на средства, сэкономленные от школьных завтраков, и мастерил очередную электрическую "пищалку". И никто подумать не мог, что в скромном вежливом мальчике, выделявшемся среди одноклассников глубиной понимания физики, любовью к экспериментированию, формируется личность целеустремленного исследователя.

А началось все с публичной лекции о беспроволочной телеграфии, как в то время называли радио, с которой выступил начальник Тверской радиоприемной станции Б. М. Лещинский. В четырнадцать лет Олег Лосев делает окончательный выбор: его призвание — радиотехника.

Большой жизненной удачей оказалась для Лосева случайная дорожная встреча с крупнейшим радиоспециалистом того времени профессором В. К. Лебединским. В вагоне пригородного поезда познакомились и навсегда сдружились маститый ученый и увлеченный юноша. Олег зачастил на Тверскую радиоприемную станцию международных сношений, куда Лебединский приезжает из Москвы для научных консультаций.

Идет мировая война — станция занимается перехватом радиосообщений противника. Ученик В. К. Лебединского поручик М. А. Бонч-Бруезич, страстный пропагандист радиодела, всячески опекает юного радиолюбителя. В домашней лаборатории Олега кипит работа: испытываются когерреры, изготавливаются кристаллические детекторы.

Наступил революционный 1917 год. Лосев в это время заканчивает среднюю школу. Он мечтает стать радиотехником. Но для этого необходимо получить специальное образование, и он подает документы в Московский институт связи.

В 1918 году инициативная группа во главе с Бонч-Бруезичем переезжает в Нижний Новгород, где создается первый в Советской России радиотехнический научно-исследовательский институт — Нижегородская радиолаборатория (НРЛ). В. К. Лебединский становится председателем Совета НРЛ и редактором первого отечественного научного радиожурнала «Телеграфия и телефония без проводов» («ТиТбп»). НРЛ сыграла крупную роль в развитии отечественной радиотехники.

Лосев проучился в институте связи всего один месяц и вскоре оказался в Нижнем Новогороде — в кругу своих учителей и покровителей. Не обошлось, конечно, без активной агитации со стороны В. К. Лебединского. Бескорыстный, внимательный педагог взял на себя ответственность за образование молодого человека. Лосев включился в исследовательскую деятельность лабораторий, занятых разработкой новейших для того времени радиотехнических средств.

Увлечение беспроволочной телеграфией в те годы охватывало весь мир. Уже отошла в историю стеклянная трубка с железными опилками — когеррер, и давно освоенный кристаллический детектор переставал удовлетворять растущие запросы радистов. Наступала эра электронной лампы. Однако их было крайне мало, по существу, единственный тип радиолампы Р-5, да и та оставалась пределом мечтаний всех одержимых радиотехникой. Поэтому актуальной задачей тех лет было усовершенствование кристаллического детектора. Эти приборы работали весьма неустойчиво.

Лосев проверяет чистоту поверхности и внешнее строение кристаллов, в различных режимах изучает вольт-амперные характеристики детекторов и оценивает влияющие на них факторы.

Молодой исследователь не покидает Нижегородскую лабораторию сутками: днем проводит эксперименты, ночью занимает "свое место" на площадке третьего этажа, перед выходом на чердак, где стоит его кровать, а одеялом служит пальто. Таким был "комфорт" начала 20-х годов.

Исследуя вольт-амперные характеристики детекторов, Лосев подметил, что некоторые образцы имеют довольно странную кривую, включающую падающий участок. Детектируют они столь же неустойчиво, но что-то подсказывает Олегу, что он на пути к разгадке. В конце 1921 года, во время короткого отпуска в Твери Лосева продолжает опыты в своей юношеской лаборатории. Снова берет цинкит и угольный волосок от старой лампы, начинает испытывать детектор. Что это? В наушниках какая-то далекая станция чисто и громко ведет передачу азбуки Морсе. Такого еще не бывало... Значит — прием не детекторный!

Это был первый гетеродинный прием на основе полупроводникового прибора. Полученный эффект, по существу, являйся прообразом транзисторного эффекта. Лосеву удалось выявить короткий падающий участок характеристики, способный приводить к самовозбуждению колебательный контур. Так, 13 января 1922 года 19-летний исследователь сделал выдающееся открытие. Поймут и теоретически опишут его много позже, а пока — практический результат: радисты всего мира получают в руки простой детекторный приемник, работающий не хуже дорогого лампового гетеродина, при том без громоздких батарей питания, без дефицитнейших электронных ламп и сложной наладки.

Множество материалов испробовал Лосев в качестве рабочего кристалла. Лучшим оказался облагороженный цинкит, получаемый сплавлением в электрической дуге естественных цинкитных кристаллов или чистой окиси цинка. Контактным волоском служила стальная игла.

Описание полупроводникового приемника с генерирующим кристаллом появилось в печати — это было последнее слово радиотехники. Вскоре Олег разработал целый ряд радиосхем с кристаллами и написал для радиолюбителей брошюру с подробными характеристиками приемников и рекомендациями по изготовлению кристаллов.

Сразу после первой публикации открытие Лосева привлекло пристальное внимание зарубежных специалистов. Американский журнал «Рэйдио ньюс» восклицал: «Молодой русский изобретатель О. В. Лосев передал свое изобретение миру, не взяв на него патента!» Один из французских журналов писал тактичнее: «...Лосев обнародовал свое открытие, думая прежде всего о своих друзьях — радиолюбителях всего мира». Приемник Лосева получил название «Кристадин», что означало кристаллический гетеродин. Кристадин принимал слабые сигналы далеких передающих станций, повышал избирательность приема, ослаблял уровень помех.

Волна радиолюбительства охватила молодежь страны, началась «криста-динная лихорадка». Цинкит было трудно достать, пробовали, что попадалось под руку, — любой кристалл. Массовые исследования принесли еще одну находку — галенит (искусственный свинцовый блеск), он неплохо работал, и его было много. Позже ученые будут спорить: почему же в 20-е годы не был открыт транзистор? Почему одаренный исследователь, не исчерпав всех возможностей своего открытия, вдруг оставил его? Что заставило повернуть работу в иное русло? Ответ есть...

В 1923 году, экспериментируя с детектирующим контактом на основе пары «карборунд — стальная проволока», Олег Лосев обнаружил на стыке двух разнородных материалов слабое свечение. Раньше такого явления он не наблюдал, но прежде и использовались другие материалы. Карборунд (карбид кремния) был испробован впервые. Лосев повторил опыт — и снова полупрозрачный кристалл под тонким стальным острием засветился. Так, немного более 60 лет назад было сделано одно из перспективнейших открытий электроники — электролюминесценция полупроводникового перехода. Обнаружил Лосев явление случайно или тому были научные предпосылки, сейчас судить трудно. Так или иначе, но молодой талантливый исследователь не прошел мимо необычного явления, не отнес его в разряд случайных помех, напротив, обратил самое пристальное внимание, угадал, что оно базируется на еще неизвестном экспериментальной физике принципе.

Свечение многократно изучалось на различных материалах, в разных температурных условиях и электрических режимах, рассматривалось под микро-скопом. Лосеву становилось все более очевидным, что он имеет дело с открытием. «Вероятнее, что здесь происходит совершенно своеобразный электронный разряд, не имеющий, как показывает опыт, накаленных электродов», пишет он в очередной статье. Итак, новизна, неизвестность науке открытого свечения для Лосева бесспорна, но понимания физической сущности явления еще нет.

Формулировалось несколько версий по поводу физических причин открытого свечения. Одну из них он высказывает в той же статье: «Вероятнее всего, кристалл светится от электронной бомбардировки аналогично свечению различных минералов в круксовых трубках». Позже, проверяя это объяснение, Лосев помещает различные кристаллы в катодо-люминесцентную трубку и при облучении их сравнивает спектры и силу излучаемого света с аналогичными характеристиками детекторного свечения. Обнаруживается значительное сходство, но вопрос о четком понимании физики явления, по словам Лосева, остается открытым.

Все усилия ученый сосредоточивает на глубоком и детальном изучении светящегося карборундового детектора.

В № 5 журнала «ТиТбп» за 1927 год появляется большая статья «Светящийся карборундовый детектор и детектирование с кристаллами», в которой экспериментатор пишет: «Можно различать два вида свечения... свечение! — зеленовато-голубая, яркая маленькая точка и свечение II, когда ярко флуоресцирует значительная поверхность кристалла». Только через несколько десятилетий выяснится, что в кристаллической решетке карборунда в результате случайного внедрения атомов других элементов создавались активные центры, в которых происходила интенсивная рекомбинация носителей тока, вследствие чего наружу выбрасывались кванты световой энергии.

Экспериментируя с различными сортами кристаллов и разными контактными проволоками, О. В. Лосев делает два важнейших вывода: свечение происходит без выделения тепла, то есть является «холодным», инерция возникновения и потухания свечения чрезвычайно мала, то есть оно практически безынерционно. Теперь мы знаем: эти характеристики свечения, отмеченные Лосевым в 20-е годы, являются важнейшими для сегодняшних светодиодов, индикаторов, оптронов, излучателей инфракрасного света .

Физическая сущность свечения по-прежнему неясна, и О. В. Лосев настойчиво ищет объяснение физики явления. Вскоре он делает одно важное наблюдение, приближающее к пониманию сути процесса: «Под микроскопом можно хорошо видеть, что свечение возникает тогда, когда контактная проволочка касается острых ребер или изломов кристалла...», то есть генерация света происходит на кристаллических дефектах. Технические отчеты за 1927 год, хранящиеся в архивах НРЛ имени В. И. Ленина, подтверждают, насколько обстоятельно велось исследование светящегося карборундового детектора. Изучалось влияние сильного магнитного поля, ультрафиолетового излучения и рентгеновских лучей; поведение в различных средах — испы- тывалась ионизация воздуха, окружающего свечение, исследовалась термоэмиссия различных минералов. Одна за другой отпадают ошибочные версии, шаг за шагом идет накопление ценных знаний. Лосев сам готовит для экспериментов различные сорта карборунда, монтирует испытательные установки, пилит и точит металл, занимается измерениями, ведет рабочие журналы — все сам, от идеи до конечных результатов.

Исследования Лосеза по электролюминесценции получили широкий отклик и признание за рубежом. Его работы перепечатывали иностранные журналы, а открытие получило официальное название — «свечение Лосева». И за границей и у нас делались попытки его практического использования. Сам Лосев получил патент на устройство «световое реле», однако слабая разработка в тот период теории твердого тела и почти полное отсутствие полупроводниковой технологии не позволили при жизни ученого найти работам по электролюминесценции практическое применение. По существу, они относились к проблемам будущего, и до них дошла очередь лишь через 20— 30 лет.

Практическое использование эффекта свечения Лосева началось в конце пятидесятых годов. Этому способствовало освоение полупроводниковых приборов: , . Не полупроводниковыми оставались только элементы отображения информации — громоздкие и ненадежные. Поэтому во всех развитых в научно-техническом отношении странах велась интенсивная разработка полупроводниковых светоизлучающих приборов.

Первым из них стал серийно выпускаться фосфидо-галлиевый светоднод красного свечения. Вслед за ним появился карбидокремниевый диод с излучением желтого цвета. В шестидесятые годы физики и технологи создали зеленый и оранжевый светодиоды. Наконец, в начале текущего десятилетия на антимониде был получен синий светоднод. Параллельно шел поиск новых технологических методов, полупроводниковых материалов и прозрачных пластмасс. В итоге интенсивной работы была значительно увеличена яркость свечения приборов, разработаны различные типы сегментных циф-робуквенных индикаторов, матричных индикаторов и линейных шкал. Приборы с изменяющимся цветом свечения, а также различные типы светодиодных мнемонических излучателей, которые высвечивают разнообразные геометрические фигуры: прямоугольник, треугольник, круг и т. д. В последнее время возник новый класс приборов — модули плоских твердотелых экранов, из которых можно собирать мозаичные экраны и табло нового поколения.

Ученый опередил своих современников. Его заслуга не только в открытии детекторного свечения, но, главным образом, в том, что своими исследованиями он столь остро поставил проблему, что продолжение работ в этой области стало неизбежным. Так, интуиции и настойчивости О. В. Лосева обязано зарождение нового направления электроники — полупроводниковой оптоэлектроники, которое имеет огромное будущее.

(1903-05-10 ) Место рождения: Дата смерти: Научная сфера: Место работы:

ассистент кафедры медицинской биофизики 1 ЛМИ

Учёная степень:

кандидат физико-математических наук

Олег Владимирович Ло́сев (27 апреля (10 мая) (19030510 ) , Тверь - 22 января , Ленинград) - советский физик и изобретатель (15 патентов и авторских свидетельств), кандидат физико-математических наук ( г. за исследования по электролюминесценции , без защиты диссертации).

Патенты и авторские свидетельства О. В. Лосева

Патенты

  • 1. Детекторный приемник-гетеродин. Патент №467 от 1925 г.
  • 2. Устройство для нахождения генерирующих точек контактного детектора. Патент №472 от 1925 г.
  • 3. Способ изготовления цинкитного детектора. Патент №496 от 1925 г.
  • 4. Способ генерирования незатухающих колебаний. Патент №996 от 1926 г.
  • 5. Детекторный радиоприемник-гетеродин. Патент №3773 от 1927 г..
  • 6. Способ регулирования регенерации в кристадинных приемниках. Патент №4904 от 1928 г..
  • 7. Способ прерывания основной частоты катодного генератора. Патент №6068 от 1928 г..
  • 8. Способ предотвращения возникновения электрических колебаний в приемных контурах междуламповых трансформаторов низкой частоты. Патент №11101 от 1929 г.
  • 9. Световое реле. Патент №12191 от 1929 г.

Авторские свидетельства

  • 1. Электролитический выпрямитель. №28548 от 1932 г.
  • 2. Световое реле. №25657 от 1932 г.
  • 3. Способ трансформации частоты. №29875 от 1933 г.
  • 4. Способ изготовления фотосопротивлений. №32067 от 1933 г.
  • 5. Контактный выпрямитель. №33231 от 1933 г..
  • 6. Способ изготовления фотосопротивлений. №39883 от 1934 г..

Память

В октябре 2012 года в рамках проведения 11-го фестиваля «Современное искусство в традиционном музее» в Центральном музее связи имени А.С. Попова (Санкт-Петербург) был осуществлен проект Юрия Шевнина «Свет Лосева» . На стенде наряду с исторической справкой об изобретателе был представлен портрет О. Лосева, выполненный с помощью светодиодной ленты разных цветов и размеров.

Примечания

Литература

  • Новиков М. А. Олег Владимирович Лосев - пионер полупроводниковой электроники // Физика твердого тела . - 2004. - В. 1. - Т. 46. - С. 5-9.
  • Новиков М. А. Ранний восход. К столетию со дня рождения О. В. Лосева // Нижегородский музей . - 2003. - № 1. - С. 14-17.

Ссылки

  • Громов Микола Володимирович Доклад: Развитие исследований полупроводников
  • Публикация с сокращениями по изданию: «Календарь русской славы и памяти»

Категории:

  • Персоналии по алфавиту
  • Учёные по алфавиту
  • Родившиеся 10 мая
  • Родившиеся в 1903 году
  • Родившиеся в Твери
  • Умершие 22 января
  • Умершие в 1942 году
  • Умершие в Санкт-Петербурге
  • Жертвы блокады Ленинграда
  • Изобретатели радио
  • Учёные СССР
  • Кандидаты физико-математических наук
  • Физики по алфавиту
  • Физики России
  • Физики СССР
  • Физики XX века
  • Учёные Нижнего Новгорода

Wikimedia Foundation . 2010 .

Смотреть что такое "Лосев, Олег Владимирович" в других словарях:

    Советский радиофизик. В 1919 поступил в Нижегородскую радиолабораторию, с 1929 сотрудник Ленинградского физико технического института, с 1938 ‒ Ленинградского 1 го медицинского… …

    - (1903 42) российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках (свечение Лосева, фотоэлектрический эффект и др.) … Большой Энциклопедический словарь

    - (1903 1942), радиофизик. Работал в Нижегородской радиолаборатории (1919 29), затем в Ленинграде в Физико техническом институте (1929 38) и Первом Медицинском институте (с 1938). Создал (1922) полупроводниковый радиоприёмник (кристадин). Открыл… … Энциклопедический словарь

    Сов. физик. В 1919 поступил в Нижегородскую радиолабораторию; с 1929 работал в Лен. физико технич. ин те. В Нижегородской радиолаборатории Л. открыл у ряда кристаллич. детекторов (цинкита и др.) способность… … Большая биографическая энциклопедия

    - (27 апреля (10 мая) 1903(19030510), Тверь 22 января 1942, Ленинград) советский физик и изобретатель (15 авторских свидетельств), кандидат физико математических наук (1938 г. за исследования по электролюминисценции, без защиты диссертации).… … Википедия

    Олег Владимирович Лосев (27 апреля (10 мая) 1903(19030510), Тверь 22 января 1942, Ленинград) советский физик и изобретатель (15 авторских свидетельств), кандидат физико математических наук (1938 г. за исследования по электролюминисценции, без… … Википедия

    Лосев русская фамилия. Известные носители: Лосев, Александр Николаевич (1949 2004) солист ВИА «Цветы». Лосев, Алексей Фёдорович (1893 1988) русский философ. Лосев, Андрей Семёнович (род. 1963) российский физик теоретик.… … Википедия

    Олег Владимирович Лосев (27 апреля (10 мая) 1903(19030510), Тверь 22 января 1942, Ленинград) советский физик и изобретатель (15 авторских свидетельств), кандидат физико математических наук (1938 г. за исследования по электролюминисценции, без… … Википедия

    I Лосев Алексей Федорович [родился 10(22). 9.1893, Новочеркасск], советский философ и филолог, профессор (1923), доктор филологических наук (1943). Окончил в 1915 историко филологический факультет Московского университета. Читал курсы… … Большая советская энциклопедия

Олег Владимирович Лосев (27 апреля 1903, Тверь — 22 января 1942, Ленинград) — советский физик и изобретатель (15 авторских свидетельств), кандидат физико-математических наук (1938 г. за исследования по электролюминисценции, без защиты диссертации).

Изобретатель кристадина (Нижний Новгород, 1929, работы по изучению эффекта усиления на п/п-кристаллах цинкита, детекторный приёмник с генерирующим диодом) и светодиода (Н.Новгород, 1923 — работы по наблюдению люминесценции карбида кремния, февраль 1927 — 2 авторских свидетельства на «Световое реле»).

Умер от голода во время блокады Ленинграда в 1942 году.

Изобретение инженера Лосева, Виктор Жирнов, автор «Эксперт»

Благодаря забытому ныне физику Олегу Лосеву у СССР был шанс создать полупроводниковые технологии намного раньше, чем США

В списке государств — лидеров в области полупроводниковых технологий Россия не значится. Направив основные финансовые и человеческие ресурсы на создание космической техники и разработку атомного оружия, руководители советского государства не сумели своевременно «откорректировать» научный бюджет таким образом, чтобы он пришел в соответствие с быстро менявшимися реалиями НТР.

Между тем анализ истории науки однозначно свидетельствует в пользу того, что при более удачном стечении обстоятельств у Советского Союза были отличные шансы опередить остальной мир в этой технологической гонке. В этом году исполнилось восемьдесят лет со дня создания первого в мире полупроводникового прибора, усиливавшего и генерировавшего электромагнитные колебания. Автором этого важнейшего изобретения был наш соотечественник, девятнадцатилетний сотрудник Нижегородской радиолаборатории Олег Владимирович Лосев . Его многочисленные открытия намного опередили время и, как это, к сожалению, часто случалось в истории науки, были практически забыты к моменту начала бурного развития полупроводниковой электроники.

Пересмотр приоритетов

Летом 2001 года два менеджера американской компании Intel попросили одного из авторов этой статьи составить неформальный список российских ученых, внесших значительный вклад в развитие физики и технологии полупроводников. Составляя список, мы включили в него и Олега Лосева, упомянув, что «О. В. Лосев был одним из пионеров применения полупроводников в практических радиоэлектронных устройствах в начале 20−х годов XX века».

К стыду своему, все, что мы знали тогда о О. В. Лосеве, было подчерпнуто из кратких упоминаний в предисловиях к некоторым отечественным техническим изданиям, преимущественно 50−х годов. Эти упоминания касались в основном демонстрации Лосевым усиления и генерации радиочастотных колебаний с помощью разновидности кристаллического детектора — кристадина. При этом физический принцип действия прибора не описывался. В ответ на запрос Intel мы написали буквально следующее: «Лосев О. В. продемонстрировал первый полупроводниковый трехконтактный усилитель». Реакция коллег из Intel была неожиданной. Кроме обычной в таких случаях благодарности они задали вопрос, в котором содержался неподдельный интерес: если О. Лосев создал первый трехтерминальный полупроводниковый прибор в 20−х годах, то получается, что он создатель первого в мире транзистора, за который Джон Бардин, Уолтер Брэттэн и Уильям Шокли получили Нобелевскую премию в 1956 году.

Просмотрев еще раз информацию о Лосеве в американском учебнике, мы нашли, что его прибор был двухконтактным, а ошибочное утверждение о трехконтактном приборе возникло из-за того, что стандартные электронные усилительные приборы (такие как транзисторы) имеют три контакта, поэтому мы отождествили усилительный прибор с трехконтактным. Тогда как же работал на самом деле усилитель Лосева? Один из авторов статьи вспомнил о двухконтактном приборе, который может усиливать электрический сигнал. Это — туннельный диод, имеющий так называемую N-образную вольт-амперную характеристику (ВАХ). В своем новом письме Intel мы так и написали: «Прибор О. В. Лосева был двухконтактным с N-образной ВАХ, напоминающей туннельный диод». Ответ из Intel последовал незамедлительно: если О. Лосев создал первый туннельный диод в 20−х годах, то как быть с Лео Есаки, который получил Нобелевскую премию (1973 год) за открытие туннельного диода в 1958 году?

Так рутинная историческая справка превратилась в загадку. Впрочем, не меньше удивляли неподдельный интерес американцев — сотрудников Intel и их желание докопаться до сути. Они провели самостоятельные изыскания и установили, что Олег Лосев был к тому же пионером оптоэлектроники и что на эту тему была обширная статья в американском журнале еще в 70−х годах. В таком контексте вполне естественным было поставить вопрос о «пересмотре приоритетов» в нобелевских работах, да и любопытство американских специалистов серьезно стимулировало к дальнейшим поискам.

Труды и дни Олега Лосева

Лосев стал знаменитостью, когда ему едва исполнилось двадцать лет. Например, в редакторском предисловии к статье Лосева «Осциллирующие кристаллы» в американском журнале The Wireless World and Radio Review (октябрь 1924 года) говорится: «Автор этой статьи, Мр. О. Лосев из России за сравнительно короткий промежуток времени приобрел мировую известность в связи с его открытием осциллирующих свойств у некоторых кристаллов…». Другой американский журнал — Radio News — публикует примерно в то же время статью под заголовком «Сенсационное изобретение». В ней говорилось: «Нет надобности доказывать, что это — революционное радио-изобретение. В скором времени мы будем говорить о схеме с тремя или шестью кристаллами, как мы говорим теперь о схеме с тремя или шестью усилительными лампами. Потребуется несколько лет для того, чтобы генерирующий кристалл усовершенствовался настолько, чтобы стать лучше вакуумной лампы, но мы предсказываем, что такое время наступит».

Работы Лосева по исследованию полупроводников печатались в таких журналах, как «ЖЭТФ», «Доклады АН СССР», Radio Revue, Philosophical Magazine, Physikalische Zeitschrift и др. Он выступал с докладами на многих всесоюзных конференциях, был премирован Комиссией Наркомпроса.

Один только перечень научных и инженерных достижений Олега Лосева составляет несколько страниц. Из него мы выделим два наиболее ярких результата. Первое — Лосев создал первые в мире полупроводниковые усилитель и генератор электрических сигналов. Он разработал и изготовил практические приемно-передающие устройства на полупроводниках.

Второе достижение Лосева — это пионерские работы в области оптоэлектроники: создание и всестороннее исследование первого в мире светодиода. Поразительно, что для объяснения наблюдаемых эффектов Лосев пользовался понятиями квантовой физики (за несколько лет до формального рождения квантовой механики твердого тела). Отметим также, что для исследования области полупроводника, из которой идет свечение, Лосев использовал трехэлектродные схемы, то есть он фактически продемонстрировал транзисторную структуру (правда, без усиления).


Волшебный кристадин

В 20−е годы было известно, что если к некоторым кристаллам прижать металлическую проволоку, то у них возникает способность принимать (детектировать) радиосигналы. Для демонстрации этого эффекта чаще всего использовались кристаллы галенита (PbS). Однако сам принцип действия детекторов в то время не был известен. К тому же детекторы работали неустойчиво, сигнал на выходе кристаллического детектора был очень слаб и его можно было услышать только с помощью чувствительных наушников.

Олег Лосев стал искать пути усовершенствования детекторов. В процессе исследований в Нижегородской радиолаборатории он обнаружил в детекторе из цинкита (минеральный оксид цинка — ZnO) со стальным острием способность усиливать слабые радиосигналы и возбуждать в радиотехнических контурах незатухающие колебания. Лосев установил фундаментальную закономерность — генерацию или усиление сигнала с помощью двухэлектродного прибора можно получить только в том случае, если он при определенных условиях обладает «отрицательным сопротивлением» (возрастание напряжения на приборе приводит к падению тока). Это открытие и легло в основу радиоприемника, который Лосев создал в 1922 году и назвал кристадином. Свои результаты изобретатель впервые опубликовал в нижегородском журнале «Телеграфия и телефония без проводов» («ТиТбп»).

Устройство Лосева позволило не только принимать радиосигналы на больших расстояниях, но и передавать их. Молодому исследователю удалось получить пятнадцатикратное усиление сигнала в головных телефонах (наушниках) по сравнению с обычным детекторным приемником. Радиолюбители, высоко оценившие изобретение Лосева, писали в различные журналы, что «при помощи цинкитного детектора в Томске, например, можно слышать Москву, Нижний и даже заграничные станции». По лосевской брошюре «Кристадин» создавали свои первые приемники тысячи энтузиастов радиосвязи. Более того, кристадины можно было просто купить как в России (по цене 1 руб. 20 коп.), так и за рубежом.
Превратности судьбы

Казалось бы, Лосева ожидало блестящее будущее. Но хотя он и получил мировое признание в возрасте двадцати лет, самой высокой научной должностью, которую он когда-либо занимал, была должность старшего лаборанта.

Попытаемся реконструировать обстановку, в которой работал молодой ученый. Пик творческой активности Лосева приходится на 1921−1928 годы, когда он работал в Нижегородской радиолаборатории (НРЛ). И это не случайно — НРЛ была уникальной организацией, подобной с тех пор в России не было. НРЛ была организована в 1918 году по прямому указанию Ленина, и в дальнейшем он лично ее курировал.

По творческой атмосфере, царившей в Нижегородской радиолаборатории в 1918−1924 годах, по широте и результативности исследований ее впору сопоставлять разве что со знаменитой Bell Laboratories в США, которую принято считать самой результативной научно-производственной организацией в мире. НРЛ по структуре и задачам кардинально отличалась как от отраслевых институтов, обслуживающих уже сформировавшиеся узкие технические направления, так и от академических институтов, призванных проводить фундаментальные исследования. В НРЛ, как позднее и в Bell Laboratories, задача ставилась и решалась комплексно: в первую очередь формулировалась широкая практическая задача, и по ходу ее решения ставились фундаментальные научные вопросы. Не было разделения на прикладную и фундаментальную науку — исследователи были и учеными, и инженерами одновременно.

После смерти Ленина статус лаборатории меняется. В 1925 году ее переводят из подчинения Наркомата почт и телеграфа в систему Научно-технического отдела ВСНХ СССР, который подчиняет ее Тресту заводов слаботочной электропромышленности. В 1928 году Нижегородская радиолаборатория прекращает свое существование — ее поглощает Центральная радиолаборатория в Ленинграде (ЦРЛ). Разумеется, в новой организации были свои программы работ. Лаборант Лосев был назначен в группу фотодетекторов. В 1935 году в результате реорганизации ЦРЛ Лосев остался без работы. При помощи друзей ему удается устроиться ассистентом на кафедру физики 1−го медицинского института. На этом его научная работа прервалась. В 1940 году он вновь попытался продолжить исследования, но помешала война.
Въедливый экспериментатор

Представим на мгновение, что работы Лосева получают поддержку, пусть даже очень скромную, — Лосев работает руководителем группы из нескольких человек (даже не лаборатории), у него самостоятельная тема, у него есть возможность участвовать в международных конференциях. Могли ли при таком сценарии работы Лосева приблизить эру твердотельной электроники? С одной стороны, в 1922 году Лосев не знал и не мог знать целого ряда явлений, необходимых для понимания работы кристадина, таких как зонная структура твердого тела (эта теория была разработана в 30−х годах), роль примесей в полупроводниках (понята только в 40−х) и туннельный эффект (открыт в конце 20−х годов).

Но, с другой стороны, были известны дискретная структура атома и концепция квантов. В принципе это уже достаточная база для работы экспериментатора. Существовала и теория газового разряда с лавинным размножением (в таком разряде наблюдается аналогичная ВАХ с отрицательным участком). Методология его экспериментов, выполненных в 1926−1927 годах, была столь удачна, что практически те же экспериментальные приемы используются современными исследователями. Вот что пишет об этих работах известный современный исследователь электролюминесценции в полупроводниках американец Игон Лобнер (к слову, автор лучшего исследования научных достижений Лосева): «Его экспериментальная методология была в основном той же, что мы использовали в лаборатории фирмы RCA, работая с выращенными из расплава монокристаллами фосфида галлия».

Поразительной была и интуиция Лосева. Например, когда он пытался объяснить свои результаты измерения положения границы в спектрах излучения, он пришел к выводу, что излучение, возникшее при пропускании тока, есть явление, обратное фотоэлектрическому эффекту, и предложил качественное объяснение этого эффекта, очень близкое к современным представлениям.

Основной экспериментальной трудностью для Лосева было отсутствие надежных материалов. Однако он был очень настойчивым и въедливым экспериментатором. Исследовал все доступные тогда полупроводники. Известно, что, изучая фотоэлектрические эффекты в полупроводниках, Лосев исследовал девяносто два различных материала, в том числе и кремний. Экспериментируя с синтезом полупроводниковых кристаллов, он неминуемо бы обнаружил влияние примесей на электрические свойства полупроводников. Он также неминуемо обнаружил бы, что кремний и германий являются наиболее подходящими полупроводниковыми материалами (последняя работа Лосева была посвящена именно кремнию). Наконец, развивая экспериментальную методику, он мог наблюдать эффект усиления в трехконтактных полупроводниковых структурах — то есть сделать первые транзисторы. Таким образом, продолжение и расширение работ Лосева, безусловно, могло бы приблизить полупроводниковую эру (со всеми ее как прикладными, так и фундаментальными научными проблемами), и Россия получила бы ключевую технологию XX века.
Академики и лаборанты

«Почему работы Лосева не включены в знаменитые исторические очерки по истории твердотельных усилителей — это очень интересный вопрос. Ведь кристадиновые радиоприемники и детекторы Лосева в середине 20−х годов демонстрировались на основных европейских радиотехнических выставках… Я сам видел кристадинный радиоприемник в советской экспозиции в Нью-Йорке в 1959 году», — вопрошает в одной из работ Игон Лобнер.

Есть такой биографический справочник — «Физики» (автор Ю. А. Храмов), он вышел в 1983 году в издательстве «Наука». Это самое полное собрание автобиографий отечественных и зарубежных ученых, изданное в нашей стране. Имени Олега Лосева в этом справочнике нет. Ну что ж, скажет читатель, справочник не может вместить всех, вошли только самые достойные. Но в той же самой книге содержится раздел «Хронология физики», где приведен перечень «основных физических фактов и открытий» и среди них: «1922 г. — О. В. Лосев открыл генерацию электромагнитных колебаний высокой частоты контактом металл-полупроводник».

Таким образом, в этой книге работа Лосева признана одной из самых важных в физике XX века, но места для его автобиографии не нашлось. В чем тут дело? Ответ очень прост: все советские физики послереволюционного периода заносились в справочник по рангу — включались только члены-корреспонденты и академики. Лаборанту же Лосеву дозволялось делать открытия, но не греться в лучах славы. При этом имя Лосева и значение его работ было хорошо известно сильным мира сего. В подтверждение этих слов процитируем выдержку из письма академика Абрама Иоффе Паулю Эренфесту (16 мая 1930 г.): «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2−6 вольт. Граница свечения в спектре ограничена».

А вот что пишут А. Г. Остроумов и А. А. Рогачев в своей статье, посвященной Лосеву: «А. Ф. Иоффе приглашает его провести ряд опытов в ЛФТИ. Некоторое время у О. В. Лосева в ЛФТИ было свое собственное рабочее место, однако закрепиться в штате ЛФТИ ему не удалось». Судя по всему, Лосев был «слишком независимым» человеком. Действительно, все работы он выполнил самостоятельно — ни в одной из них нет соавторов.

В 1947 году (к тридцатилетию Октябрьской революции) в нескольких выпусках журнала «Успехи физических наук» были опубликованы обзоры развития советской физики за тридцать лет, такие как: «Советские исследования по электронным полупроводникам», «Советская радиофизика за 30 лет», «Советская электроника за 30 лет». О Лосеве и его исследованиях кристадина упоминается лишь в одном обзоре (Б. И. Давыдова) — в части, посвященной фотоэффекту, отмечается: «В заключение нужно еще упомянуть работы О. В. Лосева по свечению кристаллического карборунда и по "обратимому" вентильному фотоэффекту в нем (1931−1940)». И ничего сверх этого. (Отметим, к слову, что большинство результатов, которые в тех обзорах оценивались как «выдающиеся», сегодня никто и не вспоминает.)

Есть одно очень символическое совпадение: Лосев умер от голода в 1942 году в блокадном Ленинграде, а его работа по кремнию оказалась потерянной , и в том же 1942 году в США компании Sylvania и Western Electric начали промышленное производство кремниевых (а чуть позже и германиевых) точечных диодов, которые использовались в качестве детекторов-смесителей в радиолокаторах. Через несколько лет работы в этой области привели к созданию транзистора. Смерть Лосева совпала по времени с рождением кремниевой технологии.

Подпишитесь на нас