Общая формула оксидов щелочноземельных металлов. Соединения щелочноземельных металлов

К щелочноземельным металлам относятся металлы IIA группы Периодической системы Д.И. Менделеева – кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Кроме них в главную подгруппу II группы входят бериллий (Be) и магний (Mg). На внешнем энергетическом уровне щелочноземельных металлов находится два валентных электрона. Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов – ns 2 . В своих соединениях они проявляют единственную степень окисления равную +2. В ОВР являются восстановителями, т.е. отдают электрон.

С увеличением заряда ядра атомов элементов, входящих в группу щелочноземельных металлов, энергия ионизации атомов уменьшается, а радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются.

Физические свойства щелочноземельных металлов

В свободном состоянии Be – металл серо-стального цвета, обладающий плотной гексагональной кристаллической решеткой, достаточно твердый и хрупкий. На воздухе Be покрывается оксидной пленкой, что придает ему матовый оттенок и снижает его химическую активность.

Магний в виде простого вещества представляет собой белый металл, который, также, как и Be, при нахождении на воздухе приобретает матовый оттенок за счет образующейся оксидной пленки. Mg мягче и пластичнее бериллия. Кристаллическая решетка Mg – гексагональная.

Ca, Ba и Sr в свободном виде – серебристо-белые металлы. При нахождении на воздухе мгновенно покрываются желтоватой пленкой, которая представляет собой продукты их взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, Ba и Sr – мягче.

Ca и Sr имею кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку.

Все щелочноземельные металлы характеризуются наличием металлического типа химической связи, что обуславливает их высокую тепло- и электропроводность. Температуры кипения и плавления щелочноземельных металлов выше, чем щелочных металлов.

Получение щелочноземельных металлов

Получение Be осуществляют по реакции восстановления его фторида. Реакция протекает при нагревании:

BeF 2 + Mg = Be + MgF 2

Магний, кальций и стронций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl 2 = Ca + Cl 2

Причем, при получении Mg электролизом расплава дихлорида для понижения температуры плавления в реакционную смесь добавляют NaCl.

Для получения Mg в промышленности используют металло- и углетермические методы:

2(CaO×MgO) (доломит) + Si = Ca 2 SiO 4 + Mg

Основной способ получения Ba – восстановление оксида:

3BaO + 2Al = 3Ba + Al 2 O 3

Химические свойства щелочноземельных металлов

Поскольку в н.у. поверхность Be и Mg покрыта оксидной пленкой – эти металлы инертны по отношению к воде. Ca, Sr и Ba растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства:

Ba + H 2 O = Ba(OH) 2 + H 2

Щелочноземельные металлы способны реагировать с кислородом, причем все они, за исключением бария, в результате этого взаимодействия образуют оксиды, барий – пероксид:

2Ca + O 2 = 2CaO

Ba + O 2 = BaO 2

Оксиды щелочноземельных металлов, за исключением бериллия, проявляют основные свойства, Be – амфотерные свойства.

При нагревании щелочноземельные металлы способны к взаимодействию с неметаллами (галогенами, серой, азотом и др.):

Mg + Br 2 =2MgBr

3Sr + N 2 = Sr 3 N 2

2Mg + 2C = Mg 2 C 2

2Ba + 2P = Ba 3 P 2

Ba + H 2 = BaH 2

Щелочноземельные металлы реагируют с кислотами – растворяются в них:

Ca + 2HCl = CaCl 2 + H 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Бериллий реагирует с водными растворами щелочей – растворяется в них:

Be + 2NaOH + 2H 2 O = Na 2 + H 2

Качественные реакции

Качественной реакцией на щелочноземельные металлы является окрашивание пламени их катионами: Ca 2+ окрашивает пламя в темно-оранжевый цвет, Sr 2+ — в темно-красный, Ba 2+ — в светло-зеленый.

Качественной реакцией на катион бария Ba 2+ являются анионы SO 4 2- , в результате чего образуется белый осадок сульфата бария (BaSO 4), нерастворимый в неорганических кислотах.

Ba 2+ + SO 4 2- = BaSO 4 ↓

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений: Ca→CaO→Ca(OH) 2 →Ca(NO 3) 2
Решение 2Ca + O 2 →2CaO

CaO + H 2 O→Ca(OH) 2

Ca(OH) 2 + 2HNO 3 →Ca(NO 3) 2 + 2H 2 O

Вторая группа периодической системы Д. И. Менделеева содержит группу элементов, очень похожих по своим свойствам на щелочные металлы, однако уступающих им по активности. В нее входят бериллий и магний, а также кальций, стронций, барий и радий. Они известны под общим названием - щелочноземельные элементы. В нашей статье мы ознакомимся с их распространением в природе и применением в промышленности, а также изучим важнейшие химические свойства щелочноземельных металлов.

Общая характеристика

Все атомы выше перечисленных элементов содержат на внешнем энергетическом слое по два электрона. Взаимодействуя с другими веществами, они всегда отдают свои отрицательные частицы, переходя в состояние катионов с зарядом 2+. В окислительно-восстановительных реакциях элементы ведут себя как сильные восстановители. По мере увеличения заряда ядра, химические свойства щелочноземельных металлов и их активность усиливаются. На воздухе они быстро окисляются, образуя на своей поверхности оксидную пленку. Общая формула всех оксидов - RO. Им соответствуют гидроксиды с формулой R(OH) 2 . Их основные свойства и растворимость в воде также возрастают с увеличением порядкового номера элемента.

Особые свойства бериллия и магния

По некоторым своим свойствам первые два представителя главной подгруппы второй группы несколько отличаются от других щелочноземельных элементов. Это проявляются, в частности, во время их взаимодействия с водой. Например, химические свойства бериллия таковы, что он вообще не вступает в реакцию с H 2 O. Магний же взаимодействует с водой лишь при нагревании. Зато все щелочноземельные элементы легко реагируют с нею при обычной температуре. Какие же вещества при этом образуются?

Основания щелочноземельных металлов

Являясь активными элементами, кальций, барий и другие представители группы быстро вытесняют водород из воды, в результате получаются их гидроксиды. Взаимодействие щелочноземельных металлов с водой протекает бурно, с выделением тепла. Растворы оснований кальция, бария, стронция мылкие на ощупь, при попадании на кожу и слизистую оболочку глаз вызывают сильные ожоги. Первой помощью в таких случаях будет обработка раневой поверхности слабым раствором уксусной кислоты. Он нейтрализует щелочь и уменьшит риск возникновения некроза поврежденных тканей.

Химические свойства щелочноземельных металлов

Взаимодействие с кислородом, водой и неметаллами - это главный перечень свойств металлов, входящих во вторую группу периодической системы химических элементов. Например, кальций даже в обычных условиях вступает в реакции с галогенами: фтором, хлором, бромом и йодом. При нагревании он соединяется с серой, углеродом и азотом. Жесткое окисление - горение, заканчивается образованием оксида кальция: 2Ca + O 2 = 2 CaO. Взаимодействие металлов с водородом приводит к появлению гидридов. Они представляют собой тугоплавкие вещества белого цвета, имеющие ионные кристаллические решетки. К важным химическим свойствам щелочноземельных металлов относится их взаимодействие с водой. Как уже говорилось ранее, продуктом этой реакции замещения будет гидроксид металла. Отметим также, что в главной подгруппе второй группы наиболее значимое место занимает кальций. Поэтому остановимся на его характеристике подробнее.

Кальций и его соединения

Содержание элемента в земной коре составляет до 3,5%, что указывает на его широкое распространение в составе таких минералов, как известняк, мел, мрамор и кальцит. В состав природного кальция входит шесть видов изотопов. Он также содержится в источниках природной воды. Соединения щелочных металлов подробно изучаются в курсе неорганической химии. Например, на уроках в 9 классе учащиеся узнают, что кальций - это легкий, но прочный металл серебристо-белого цвета. Температура его плавления и кипения выше, чем у щелочных элементов. Основной способ получения - электролиз смеси расплавленных солей хлорида и фторида кальция. К основным химическим свойствам относятся его реакции с кислородом, водой и неметаллами. Из соединений щелочных металлов наибольшее значение для промышленности имеют оксид и основание кальция. Первое соединение получают из мела или известняка методом их выжигания.

Далее из окиси кальция и воды образуется гидроксид кальция. Смесь его с песком и водой называют строительным известковым раствором. Он продолжает применяться в качестве штукатурки и для соединения кирпичей при кладке стен. Раствор гидроксида кальция, называемый известковой водой, используют в качестве реактива для обнаружения углекислого газа. При пропускании двуокиси углерода через прозрачный водный раствор Ca(OH) 2 , наблюдается его помутнение вследствие образования нерастворимого осадка карбоната кальция.

Магний и его характеристика

Химия щелочноземельных металлов изучает свойства магния, акцентируя внимание на некоторых его особенностях. Он представляет собой очень легкий, серебристо-белый металл. Магний, расплавленный в атмосфере с высокой влажностью, активно поглощает из водяного пара молекулы водорода. Остывая, металл практически полностью выделяет их обратно в воздух. Он очень медленно реагирует с водой по причине образования малорастворимого соединения - гидроксида магния. Щелочи на магний не действуют вовсе. Не реагирует металл с некоторыми кислотами: концентрированной сульфатной и плавиковой, вследствие его пассивации и образования на поверхности защитной пленки. Большинство же минеральных кислот растворяют металл, что сопровождается бурным выделением водорода. Магний - сильный восстановитель, он замещает многие металлы из их оксидов или солей:

BeO + Mg = MgO + Be.

Металл вместе с бериллием, марганцем, алюминием применяют в качестве легирующей добавки к стали. Особенно ценными свойствами обладают магнийсодержащие сплавы - электроны. Их используют в самолетостроении и производстве автомобилей, а также в деталях оптической техники.

Роль элементов в жизнедеятельности организмов

Приведем примеры щелочноземельных металлов, соединения которых распространены в живой природе. Магний является центральным атомом в молекулах хлорофилла у растений. Он участвует в процессе фотосинтеза и входит в состав активных центров зеленого пигмента. Атомы магния фиксируют световую энергию, преобразуя ее затем в энергию химических связей органических соединений: глюкозы, аминокислот, глицерина и жирных кислот. Важную роль выполняет элемент в качестве необходимого компонента ферментов, регулирующих обмен веществ в организме человека. Кальций - макроэлемент, обеспечивающий эффективное прохождение электрических импульсов по нервной ткани. Присутствие его фосфорнокислых солей в составе костей и зубной эмали придает им твердость и прочность.

Бериллий и его свойства

К щелочноземельным металлам относятся также бериллий, барий и стронций. Рассмотрим бериллий. Элемент мало распространен в природе, в основном, встречается в составе минералов, например, берилла. Его разновидности, содержащие разноцветные примеси, образуют драгоценные камни: изумруды и аквамарины. Особенностью физических свойств является хрупкость и высокая твердость. Отличительной чертой атома элемента является наличие на втором снаружи энергетическом уровне не восьми, как у всех остальных щелочноземельных металлов, а только двух электронов.

Поэтому радиус атома и иона непропорционально мал, энергия ионизации большая. Это обуславливает высокую прочность кристаллической решетки металла. Химические свойства бериллия также отличают его от других элементов второй группы. Он реагирует не только с кислотами, но и с растворами щелочей, вытесняя водород и, образуя гидроксобериллаты:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 .

Металл имеет ряд уникальных характеристик. Благодаря способности пропускать рентгеновские лучи, его применяют для изготовления окошек рентгеновских трубок. В ядерной промышленности элемент считается наилучшим замедлителем и отражателем нейтронов. В металлургии он применяется как ценная легирующая добавка, повышающая антикоррозионные свойства сплавов.

Стронций и барий

Элементы достаточно распространены в природе и, так же, как щелочноземельный металл магний, входят в состав минералов. Назовем их: это барит, целестин, стронцианит. Барий имеет вид пластичного металла серебристо-белого цвета. Как и кальций, представлен несколькими изотопами. На воздухе активно взаимодействует с его компонентам - кислородом и азотом, образуя оксид и нитрид бария. По этой причине металл хранят под слоем парафина или минерального масла, избегая его контакта с воздухом. Оба металла при нагревании до 500°C образуют пероксиды.

Из них практическое применение имеет перекись бария, используемая в качестве отбеливателя тканей. Химические свойства щелочноземельных металлов - бария и стронция, похожи на свойства кальция. Однако их взаимодействие с водой протекает значительно активнее, а образовавшиеся основания являются более сильными, чем гидроксид кальция. Барий применяют в качестве добавки к жидкометаллическим теплоносителям, уменьшающей коррозию, в оптике, при изготовлении вакуумных электронных приборов. Стронций востребован в производстве фотоэлементов и люминофоров.

Качественные реакции с использованием ионов щелочноземельных металлов

Соединения бария и стронция - это примеры щелочноземельных металлов, широко используемых в пиротехнике по причине яркого окрашивания пламени их ионами. Так, сульфат или карбонат стронция дает карминово-красное свечение пламени, а соответствующие соединения бария - желто-зеленое. Для обнаружения ионов кальция в лаборатории на пламя горелки насыпают несколько крупинок хлорида кальция, пламя окрашивается в кирпично-красный цвет.

Раствор хлорида бария применяют в аналитической химии для выявления в растворе ионов кислотного остатка сульфатной кислоты. Если при сливании растворов образуется белый осадок сульфата бария - значит, в нем находились частицы SO 4 2- .

В нашей статье мы изучили свойства щелочноземельных металлов и привели примеры их применения в различных отраслях промышленности.

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2:

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения

В природе щелочноземельные металлы встречаются в виде следующих соединений:

  • Be - BeO*Al 2 O 3 *6SiO 2 - берилл
  • Mg - MgCO 3 - магнезит, MgO*Al 2 O 3 - шпинель, 2MgO*SiO 2 - оливин
  • Ca - CaCO 3 - мел, мрамор, известняк, кальцит, CaSO 4 *2H 2 O - гипс, CaF 2 - флюорит


Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl 2 → (t) Mg + Cl 2 (электролиз расплава)

CaO + Al → Al 2 O 3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

MgBr 2 + Ca → CaBr 2 + Mg


Химические свойства

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Получение

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

MgCO 3 → (t) MgO + CO 2

Ca(NO 3) 2 → (t) CaO + O 2 + NO 2


Химические свойства

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получение

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH) 2)

CaO + H 2 O → Ca(OH) 2

Химические свойства

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Ba(OH) 2 + H 2 SO 4 → BaSO 4 ↓ + H 2 O

Ca(OH) 2 + H 2 O + CO 2 → Ca(HCO 3) 2 + H 2 O

Ca(HCO 3) 2 + Ca(OH) 2 → CaCO 3 + H 2 O + CO 2

Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O


Реакция с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + NaOH

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Be(OH) 2 + HCl → BeCl 2 + H 2 O

Be(OH) 2 + NaOH → Na 2

Жесткостью воды называют совокупность свойств воды, зависящая от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.


Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO 3 - бесспорное доказательство устранения жесткости:

Ca(HCO 3) 2 → CaCO 3 ↓ + CO 2 + H 2 O

Также временную жесткость можно устранить, добавив Na 2 CO 3 в воду:

Ca(HCO 3) 2 + Na 2 CO 3 → CaCO 3 ↓ + NaHCO 3

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na 2 CO 3:

CaCl 2 + Na 2 CO 3 → CaCO 3 ↓ + NaCl

MgSO 4 + Na 2 CO 3 + H 2 O → 2 CO 3 ↓ + CO 2 + Na 2 SO 4

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Металлы главных подгрупп I и II групп. Жесткость воды

В периодической системе элементов металлы в основном располагаются в главных подгруппах I-Ill групп, а также в побочных подгруппах.

В IA группе у атомов элементов на внешнем энергетическом уровне находится 1 электрон в состоянии s 1 , во IIA группе у атомов на внешнем ЭУ 2 электрона в состоянии s 2 . Эти элементы относятся к s-элементам. В IIIA группе у всех элементов на внешнем ЭУ 3 электрона в состоянии s 2 p 1 . Они относятся к p-элементам.

В IA группу входят щелочные металлы Li, Na, K, Rb, Cs, Fr, активность которых при движении сверху вниз увеличивается вследствие увеличения радиуса атомов, металлические свойства возрастают также, как и у щелочеземельных металлов IIA группы Be, Mg, Ca, Sr, Ba, Ra и металлов IIIA группы Al, Ga, In, Tl.

Оксиды типа R 2 O характерны только для Li, для всех остальных щелочных металлов характерны пероксиды R 2 O 2 , которые являются сильными окислителями.

Все металлы этих групп образуют основные оксиды и гидроксиды, кроме Be и Al, которые проявляют амфотерные свойства.

Физические свойства

В свободном состоянии все металлы – серебристо-белые вещества. Магний и щелочноземельные металлы – ковкие и пластичные, довольно мягкие, хотя тверже щелочных. Бериллий отличается значительной твердостью и хрупкостью, барий при резком ударе раскалывается.

В кристаллическом состоянии при обычных условиях бериллий и магний имеют гексагональную кристаллическую решетку, кальций, стронций – кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку с металлическим типом химической связи, что обуславливает их высокую тепло- и электропроводность.

Металлы имеют температуры плавления и кипения выше, чем у щелочных металлов, причем с увеличением порядкового номера элемента температура плавления металла изменяется немонотонно, что связано с изменением типа кристаллической решетки.

Бериллий и магний покрыты прочной оксидной пленкой и не изменяются на воздухе. Щелочноземельные металлы очень активны, их хранят в запаянных ампулах, под слоем вазелинового масла или керосина.

Некоторые физические свойства бериллия, магния и щелочно-земельных металлов приведены в таблице.

Ще­лоч­ные ме­тал­лы – это се­реб­ри­сто-бе­лые ве­ще­ства с ха­рак­тер­ным ме­тал­ли­че­ским блес­ком. Они быст­ро туск­не­ют на воз­ду­хе из-за окис­ле­ния. Это мяг­кие ме­тал­лы, по мяг­ко­сти Na, K, Rb, Cs по­доб­ны воску. Они легко ре­жут­ся ножом. Они лег­кие. Литий – самый лег­кий ме­талл с плот­но­стью 0,5 г/см 3 .

Хи­ми­че­ские свой­ства ще­лоч­ных ме­тал­лов


1. Вза­и­мо­дей­ствие с неме­тал­ла­ми

Из-за вы­со­ких вос­ста­но­ви­тель­ных свойств ще­лоч­ные ме­тал­лы бурно ре­а­ги­ру­ют с га­ло­ге­на­ми с об­ра­зо­ва­ни­ем со­от­вет­ству­ю­ще­го га­ло­ге­ни­да. При на­гре­ва­нии ре­а­ги­ру­ют с серой, фос­фо­ром и во­до­ро­дом с об­ра­зо­ва­ни­ем суль­фи­дов, гид­ри­дов, фос­фи­дов.

2Na + Cl 2 → 2NaCl

2Na + S → Na 2 S

2Na + H 2 → 2NaH

3Na + P → Na 3 P

Литий – это един­ствен­ный ме­талл, ко­то­рый ре­а­ги­ру­ет с азо­том уже при ком­нат­ной тем­пе­ра­ту­ре.

6Li + N 2 = 2Li 3 N, об­ра­зу­ю­щий­ся нит­рид лития под­вер­га­ет­ся необ­ра­ти­мо­му гид­ро­ли­зу.

Li 3 N + 3H 2 O → 3LiOH + NH 3

Толь­ко с ли­ти­ем сразу об­ра­зу­ет­ся оксид лития.

4Li + О 2 = 2Li 2 О, а при вза­и­мо­дей­ствии кис­ло­ро­да с на­три­ем об­ра­зу­ет­ся пе­рок­сид на­трия.

2Na + О 2 = Na 2 О 2 . При го­ре­нии всех осталь­ных ме­тал­лов об­ра­зу­ют­ся над­пе­рок­си­ды.

К + О 2 = КО 2

По ре­ак­ции с водой можно на­гляд­но уви­деть, как из­ме­ня­ет­ся ак­тив­ность этих ме­тал­лов в груп­пе свер­ху вниз. Литий и на­трий спо­кой­но вза­и­мо­дей­ству­ют с водой, калий – со вспыш­кой, а цезий – уже с взры­вом.

2Li + 2H 2 O → 2LiOH + H 2

4.

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O +5 H 2 O

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O

По­лу­че­ние ще­лоч­ных ме­тал­лов

Из-за вы­со­кой ак­тив­но­сти ме­тал­лов, по­лу­чать их можно при по­мо­щи элек­тро­ли­за солей, чаще всего хло­ри­дов.

Со­еди­не­ния ще­лоч­ных ме­тал­лов на­хо­дят боль­шое при­ме­не­ние в раз­ных от­рас­лях про­мыш­лен­но­сти.

Щелочноземельные металлы

Их на­зва­ние свя­за­но с тем, что гид­рок­си­ды этих ме­тал­лов яв­ля­ют­ся ще­ло­ча­ми, а ок­си­ды рань­ше на­зы­ва­ли «земли». На­при­мер, оксид бария BaO – ба­ри­е­вая земля. Бе­рил­лий и маг­ний чаще всего к ще­лоч­но­зе­мель­ным ме­тал­лам не от­но­сят. Мы не будем рас­смат­ри­вать и радий, так как он ра­дио­ак­тив­ный.

Хи­ми­че­ские свой­ства ще­лоч­но­зе­мель­ных ме­тал­лов

1. Вза­и­мо­дей­ствие с неме­тал­ла­ми

Сa + Cl 2 → 2СaCl 2

Сa + S → СaS

Сa + H 2 → СaH 2

3Сa + 2P → Сa 3 P 2-

2. Вза­и­мо­дей­ствие с кис­ло­ро­дом

2Сa + O 2 → 2CaO

3. Вза­и­мо­дей­ствие с водой

Sr + 2H 2 O → Sr(OH) 2 + H 2 , но вза­и­мо­дей­ствие более спо­кой­ное, чем с ще­лоч­ны­ми ме­тал­ла­ми.

4. Вза­и­мо­дей­ствие с кис­ло­та­ми – силь­ны­ми окис­ли­те­ля­ми

4Sr + 5HNO 3 (конц) → 4Sr(NO 3) 2 + N 2 O +4H 2 O

4Ca + 10H 2 SO 4 (конц) → 4CaSO 4 + H 2 S + 5H 2 O

По­лу­че­ние ще­лоч­но­зе­мель­ных ме­тал­лов

Ме­тал­ли­че­ский каль­ций и строн­ций по­лу­ча­ют элек­тро­ли­зом рас­пла­ва солей, чаще всего хло­ри­дов.

CaCl 2 Сa + Cl 2

Барий вы­со­кой чи­сто­ты можно по­лу­чить алю­мо­тер­ми­че­ским спо­со­бом из ок­си­да бария

Свежая поверхность Э быстро темнеет вследствие образования оксидной пленки. Пленка эта относительно плотна - с течением времени весь металл медленно окисляется. Пленка состоит из ЭО, а также ЭО 2 и Э 3 N 2 . Нормальные электродные потенциалы реакций Э-2е = Э 2+ равны =-2,84В(Са), =-2,89(Sr). Э очень активные элементы: растворяются в воде и кислотах, вытесняют большинство металлов из их оксидов, галогенидов, сульфидов. Первично (200-300 о С) кальций взаимодействует с водяным паром по схеме:

2Са + Н 2 О = СаО + СаН 2 .

Вторичные реакции имеют вид:

CаН 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2 и СаО + Н 2 О = Са(ОН) 2 .

В крепкой серной кислоте Э почти не растворяются ввиду образования пленки из малорастворимых ЭSO 4 . С разбавленными минеральными кислотами Э реагируют бурно с выделением водорода. Кальций при нагревании выше 800 о С с метаном реагирует по схеме:

3Cа + СН 4 = СаН 2 + СаС 2 .

Э при нагревании реагируют с водородом, с серой и с газообразным аммиаком. По химическим свойствам радий ближе всего к Ва, но он более активен. При комнатной температуре он заметно соединяется с кислородом и азотом воздуха. В общем, его химические свойства немного более выражены чем у его аналогов. Все соединения радия медленно разлагаются под действием собственного излучения, приобретая при этом желто-ватую или коричневую окраску. Соединения радия обладают свойством автолюминесценции. В результате радиоактивного распада 1 г Ra каждый час выделяет 553,7 Дж тепла. Поэтому температура радия и его соединений всегда выше температуры окружающей среды на 1,5 град. Также известно, что 1 г радия в сутки выделяет 1 мм 3 радона(226 Ra = 222 Rn + 4 He), на чем основано его применение как источника радона для радоновых ванн.

Гидриды Э - белые, кристаллические солеобразные вещества. Их получают непосредственно из элементов при нагревании. Температуры начала реакции Э + Н 2 = ЭН 2 равны 250 о С (Са), 200 о С (Sr), 150 о С (Ва). Термическая диссоциация ЭН 2 начинается при 600 о С. В атмосфере водорода СаН 2 не разлагается при температуре плавления (816 о С). В отсутствии влаги гидриды щелочноземельных металлов устойчивы на воздухе при обычной температуре. Они не реагируют с галогенами. Однако при нагревании химическая активность ЭН 2 возрастает. Они способны восстанавливать оксиды до металлов(W, Nb, Ti, Се, Zr, Ta), например

2СаН 2 + ТiO 2 = 2CaO + 2H 2 + Ti.

Реакция СаН 2 с Al 2 O 3 идет при 750 о С:

3СаН 2 + Al 2 O 3 = 3СаО + 3Н 2 + 2Аl,

СаН 2 + 2Al = CaAl 2 + H 2 .

С азотом СаН2 при 600оС реагирует по схеме:

3СаН 2 + N 2 = Ca 3 N 2 +3H 2 .

При поджигании ЭН 2 они медленно сгорают:

ЭН 2 + О 2 = Н 2 О + СаО.

В смеси с твердыми окислителями взрывоопасны. При действии воды на ЭН 2 выделяется гидроокись и водород. Эта реакция сильно экзотермична: смоченный водой на воздухе ЭН 2 самовоспламеняется. С кислотами ЭН 2 реагирует, например по схеме:

2HCl + CaH 2 = CaCl 2 + 2H 2 .

ЭН 2 применяют для получения чистого водорода, а также для определения следов воды в органических растворителях. Нитриды Э представляют собой бесцветные тугоплавкие вещества. Они получаются непосредственно из элементов при повышенной температуре. Водой они разлагаются по схеме:

Э 3 N 2 + 6H 2 O = 3Э(ОН) 2 + 2NH 3 .

Э 3 N 2 реагируют при нагревании с СО по схеме:

Э 3 N 2 + 3СО = 3ЭО + N 2 + 3C.

Процессы которые происходят при нагревании Э 3 N 2 с углем выглядят так:

Э3N2 + 5С = ЭCN2 + 2ЭС2; (Э = Са, Sr); Ва3N2 + 6С = Ва(СN)2 + 2ВаC2;

Нитрид стронция реагирует с HCl, давая хлориды Sr и аммония. Фосфиды Э 3 Р 2 образуются непосредственно из элементов или прокаливанием трехзамещенных фосфатов с углем:

Cа 3 (РО 4) 2 + 4С = Са 3 Р 2 + 4СО

Они гидролизуются водой по схеме:

Э 3 Р 2 + 6Н 2 О = 2РН 3 + 3Э(ОН) 2 .

С кислотами фосфиды щелочноземельных металлов дают соответствующую соль и фосфин. На этом основано их применение для получения фосфина в лаборатории.

Комплексные аммиакаты состава Э(NН 3) 6 - твердые вещества с металлическим блеском и высокой электропроводностью. Их получают действием жидкого аммиака на Э. На воздухе они самовоспламеняются. Без доступа воздуха они разлагаются на соответствующие амиды: Э(NH 3) 6 = Э(NH 2) 2 + 4NH 3 + Н 2 . При нагревании они энергично разлагаются по этой же схеме.

Карбиды щелочноземельных металлов которые получаются прокаливанием Э с углем разлагаются водой с выделением ацетилена:

ЭС 2 + 2Н 2 О = Э(ОН) 2 + С 2 Н 2 .

Реакция с ВаС 2 идет настолько бурно, что он воспламеняется в контакте с водой. Теплоты образования ЭС 2 из элементов для Са и Ва равны 14 и 12 ккалмоль. При нагревании с азотом ЭС 2 дают СаСN 2 , Ba(CN) 2 , SrCN 2 . Известны силициды (ЭSi и ЭSi 2). Их можно получить при нагревании непосредственно из элеменов. Они гидролизуются водой и реагируют с кислотами, давая H 2 Si 2 O 5 , SiH 4 , соответствующее соединение Э и водород. Известны бориды ЭВ 6 получаемые из элементов при нагревании.

Окиси кальция и его аналогов - белые тугоплавкие(T кип СаО = 2850 о С) вещества, энергично поглощающие воду. На этом основано применение ВаО для получения абсолютного спирта. Они бурно реагируют с водой, выделяя много тепла (кроме SrO растворение которой эндотермично). ЭО растворяются в кислотах и хлориде аммония:

ЭО + 2NH 4 Cl = SrCl 2 + 2NH 3 + H 2 O.

Получают ЭО прокаливанием карбонатов, нитратов, перекисей или гидроксидов соответствующих металлов. Эффективные заряды бария и кислорода в ВаО равны 0,86. SrO при 700 о С реагирует с цианистым калием:

KCN + SrO = Sr + KCNO.

Окись стронция растворяется в метаноле с образованием Sr(ОСН 3) 2 . При магнийтермическом восстановлении ВаО может быть получен промежуточный окисел Ва 2 О, который неустойчив и диспропорционирует.

Гидроокиси щелочноземельных металлов - белые растворимые в воде вещества. Они являются сильными основаниями. В ряду Са-Sr-Ba основной характер и растворимость гидроокисей увеличиваются. рПР(Са(ОН) 2) = 5,26, рПР(Sr(ОН) 2) = 3,5, рПР(Bа(ОН) 2) = 2,3. Из растворов гидроокисей обычно выделяются Ва(ОН) 2 . 8Н 2 О, Sr(ОН) 2 . 8Н 2 О, Cа(ОН) 2 . Н 2 О. ЭО присоединяют воду с образованием гидроокисей. На этом основано использование СаО в строительстве. Тесная смесь Са(ОН) 2 и NaOH в весовом соотношении 2:1 носит название натронная известь, и широко используется как поглотитель СО 2 . Са(ОН) 2 при стоянии на воздухе поглощает СО 2 по схеме:

Ca(OH)2 + CO2 = CaCO3 + Н2О.

Около 400 о С Са(ОН) 2 реагирует с угарным газом:

СО + Ca(OH) 2 = СаСО 3 + Н 2 .

Баритовая вода реагирует с СS 2 при 100 о С:

СS 2 + 2Ва(ОН) 2 = ВаСО 3 + Ва(НS) 2 + Н 2 О.

Алюминий реагирует с баритовой водой:

2Al + Ba(OH) 2 + 10H 2 O = Ba 2 + 3H 2 . Э(ОН) 2

используются для открытия угольного ангидрида.

Э образуют перекиси белого цвета. Они существенно менее стабильны в отличие от окисей и являются сильными окислителями. Практическое значение имеет наиболее устойчивая ВаО 2 , которая представляет собой белый, парамагнитный порошок с плотностью 4,96 г1см 3 и т. пл. 450°. BaО 2 устойчива при обычной температуре (может храниться годами), плохо растворяется в воде, спирте и эфире, растворяется в разбавленных кислотах с выделением соли и перекиси водорода. Термическое разложение перекиси бария ускоряют окислы, Cr 2 O 3 , Fe 2 O 3 и CuО. Перекись бария реагирует при нагревании с водородом, серой, углеродом, аммиаком, солями аммония, феррицианидом калия и т. д. С концентрированной соляной кислотой перекись бария реагирует, выделяя хлор:

ВаO 2 + 4НСl = BaCl 2 + Cl 2 + 2H 2 O.

Она окисляет воду до перекиси водорода:

Н 2 О + ВаО 2 = Ва(ОН) 2 + Н 2 О 2 .

Эта реакция обратима и в присутствии даже угольной кислоты равновесие смещено вправо. ВаО 2 используется как исходный продукт для получения Н 2 О 2 , а также как окислитель в пиротехнических составах. Однако, ВаО 2 может выступать и в качестве восстановителя:

HgCl 2 + ВаО 2 = Hg + BaCl 2 + O 2 .

Получают ВаО 2 нагреванием ВаО в токе воздуха до 500 о С по схеме:

2ВаО + О 2 = 2ВаО 2 .

При повышении температуры имеет место обратный процесс. Поэтому при горении Ва выделяется только окись. SrO 2 и СаО 2 менее устойчивы. Общим методом получения ЭО 2 является взаимодействие Э(ОН) 2 с Н 2 О 2 , при этом выделяются ЭО 2 . 8Н 2 О. Термический распад ЭО 2 начинается при 380 о С (Са), 480 о С (Sr), 790 о С (Ва). При нагревании ЭО 2 с концентрированной перекисью водорода могут быть получены желтые неустойчивые вещества -- надпероксиды ЭО 4 .

Соли Э как правило бесцветны. Хлориды, бромиды, иодиды и нитраты хорошо растворимы в воде. Фториды, сульфаты, карбонаты и фосфаты плохо растворимы. Ион Ва 2+ - токсичен. Галиды Э делятся на две группы: фториды и все остальные. Фториды почти не растворимы в воде и кислотах, и не образуют кристаллогидратов. Напротив хлориды, бромиды, и иодиды хорошо растворимы в воде и выделяются из растворов в виде кристаллогидратов. Некоторые свойства ЭГ 2 представлены ниже:

При получении путем обменного разложения в растворе фториды выделяются в виде объемистых слизистых осадков, довольно легко образующих коллоидные растворы. ЭГ 2 можно получить действуя соответствующими галогенами на соответствующие Э. Расплавы ЭГ 2 способны растворять до 30% Э. При изучении электропроводности расплавов хлоридов элементов второй группы главной подгруппы было установлено, что их молекулярно-ионный состав очень различен. Степени диссоциации по схеме ЭСl 2 = Э 2+ + 2Cl- равны: BeCl 2 - 0,009%, MgCl 2 - 14,6%, CaCl 2 - 43,3%, SrCl 2 - 60,6%, BaCl 2 - 80,2%. Галогениды (кроме фторидов) Э содержат кристаллизационную воду: CaCl 2 . 6Н 2 О, SrCl 2 . 6Н 2 О и ВаCl 2 . 2Н 2 О. Рентгеноструктурным анализом установлено строение Э[(ОН 2) 6 ]Г 2 для кристаллогидратов Са и Sr. При медленном нагревании кристаллогидратов ЭГ 2 можно получить безводные соли. CaCl 2 легко образует пересыщенные растворы. Природный СаF 2 (флюорит) применяют в керамической промышленности, а также он используется для производства HF и является минералом фтора. Безводный CaCl 2 используют как осушитель ввиду его гидроскопичности. Кристаллогидрат хлористого кальция используют для приготовления холодильных смесей. ВаСl 2 - используют в сх и для открытия

SO 4 2- (Ва 2+ + SO 4 2- = ВаSO 4).

Сплавлением ЭГ2 и ЭН2 могут быть получены гидрогалиды:

ЭГ 2 + ЭН 2 = 2ЭНГ.

Эти вещества плавятся без разложения но гидролизуются водой:

2ЭНГ + 2H 2 O = ЭГ 2 + 2Н 2 + Э(ОН) 2 .

Растворимость в воде хлоратов , броматов и иодатов в воде уменьшается по рядам Сa - Sr - Ba и Cl - Br - I. Ba(ClO 3) 2 - используется в пиротехнике. Перхлораты Э хорошо растворимы не только в воде но и в органических растворителях. Наиболее важным из Э(ClO 4) 2 является Ва(ClO 4) 2 . 3Н 2 О. Безводный перхлорат бария является хорошим осушителем. Его термический распад начинается только при 400 о С. Гипохлорит кальция Са(СlO) 2 . nH 2 O (n=2,3,4) получают действием хлора на известковое молоко. Он является окислителем и хорошо растворим в воде. Хлорную известь можно получить действуя хлором на твердую гашеную известь. Она разлагается водой и пахнет хлором в присутствии влаги. Реагирует с СО 2 воздуха:

СО 2 + 2CaOCl 2 = CаСO 3 + CaCl 2 + Cl 2 O.

Хлорная известь применяется как окислитель, отбеливатель и как дезинфицирующее средство.

Для щелочноземельных металлов известны азиды Э(N 3) 2 и роданиды Э(CNS) 2 . 3Н 2 О. Азиды по сравнению с азидом свинца гораздо менее взрывоопасны. Роданиды при нагревании легко теряют воду. Они хорошо растворимы в воде и органических растворителях. Ва(N 3) 2 и Ba(CNS) 2 могут быть использованы для получения азидов и роданидов других металлов из сульфатов обменной реакцией.

Нитраты кальция и стронция существуют обычно в виде кристаллогидратов Са(NO 3) 2 . 4H 2 O и Sr(NO 3) 2 . 4H 2 O. Для нитрата бария не свойственно образование кристаллогидрата. При нагревании Са(NO 3) 2 . 4H 2 O и Sr(NO 3) 2 . 4H 2 O легко теряю воду. В инертной атмосфере нитраты Э термически устойчивы до 455 o C (Са), 480 o C (Sr), 495 o C (Ba). Расплав кристаллогидрата нитрата кальция имеет кислую среду при 75 о С. Особенностью нитрата бария является малая скорость растворения его кристаллов в воде. Склонность к комплексообразованию проявляет лишь нитрат бария, для которого известен нестойкий комплекс K 2 . Нитрат кальция растворим в спиртах, метилацетате, ацетоне. Нитраты стронция и бария там же почти не растворимы. Температуры плавления нитратов Э оцениваются в 600 о С, однако при этой же температуре начинается распад:

Э(NO 3) 2 = Э(NO 2) 2 + O 2 .

Дальнейший распад идет при более высокой температуре:

Э(NO 2) 2 = ЭО + NO 2 + NO.

Нитраты Э уже издавна использовались в пиротехнике. Легколетучие соли Э окрашивают пламя в соответствующие цвета: Са - в оранжево-желтый, Sr - в красно-карминовый, Ba - в желто-зеленый. Разберемся в сущности этого на примере Sr: у Sr 2+ есть две ВАО: 5s и 5p или 5s и 4d. Сообщим энергию этой системе - нагреем. Электроны с более близлежащих к ядру орбиталей перейдут на эти ВАО. Но такая система не устойчива и выделит энергию в виде кванта света. Как раз Sr 2+ и излучает кванты с частотой, соответствующей длинам красных волн. При получении пиротехнических составов удобно использовать селитру, т.к. она не только окрашивает пламя, но и является окислителем, выделяя кислород при нагревании. Пиротехнические составы состоят из твердого окислителя, твердого восстановителя и некоторых органических веществ, обесцвечивающих пламя восстановителя, и являющихся связывающим агентом. Нитрат кальция используется как удобрение.

Все фосфаты и гидрофосфаты Э плохо растворимы в воде. Их можно получить растворением соответствующего количества СаО или СаСO 3 в ортофосфорной килоте. Также они осаждаются при обменных реакциях типа:

(3-х)Са 2+ + 2H x PO 4 -(3-х) = Са (3-х) (H x PO 4) 2 .

Практическое значение (как удобрение) имеет однозамещенный ортофосфат кальция, который наряду с Са(SO 4) входит в состав суперфосфата. Его получают по схеме:

Cа 3 (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) 2 + 2CаSO 4

Оксалаты тоже мало растворимы в воде. Практическое значение имеет оксалат кальция, который при 200 о С обезвоживается, а при 430 о С разлагается по схеме:

СаС 2 О 4 = СаСО 3 + СО.

Ацетаты Э выделяются в виде кристаллогидратов, и хорошо растворимы в воде.

Сульфаты Э - белые, плохо растворимые в воде вещества. Растворимость СaSO 4 . 2Н 2 О на 1000 г. воды при обычной температуре составляет 8 . 10 -3 моль, SrSO 4 - 5 . 10 -4 моль, ВаSO 4 - 1 . 10 -5 моль, RaSO 4 - 6 . 10 -6 моль. В ряду Са - Ra растворимость сульфатов быстро уменьшается. Ва 2+ является реактивом на сульфат-ион. Сульфат кальция содержит кристаллизационную воду. Выше 66 о С из раствора выделяется безводный сульфат кальция, ниже - гипс СаSO 4 . 2Н 2 О. Нагревание гипса выше 170 о С сопровождается выделением гидратной воды. При замешивании гипса с водой эта масса быстро твердеет вследствие образования кристал-логидрата. Это свойство гипса используется в строительстве. Египтяне использовали это знание еще 2000 лет назад. Растворимость ЭSO 4 в крепкой серной кислоте намного выше, чем в воде (ВаSO 4 до 10%), что свидетельствует о комплексообразовании. Соответствующие комплексы ЭSO 4 . Н 2 SO 4 могут быть получены в свободном состоянии. Двойные соли с сульфатами щелочных металлов и аммония известны только для Са и Sr. (NH 4) 2 растворим в воде и используется в аналитической химии для отделения Са от Sr, т.к. (NH 4) 2 мало растворим. Гипс применяют для комбинированного получения серной кислоты и цемента, т.к. при нагревании с восстановителем (углем) гипс разлагается:

СаSO 4 + С = СаО + SO 2 + СО.

При более высокой температуре (900 o C) сера еще больше восстанавливается по схеме:

СаSO 4 + 3С = СаS + CO 2 + 2СО.

Подобный распад сульфатов Sr и Ва начинается при более высоких температурах. ВаSO 4 нетоксичен и используется в медицине и производстве минеральных красок.

Сульфиды Э представляют собой белые твердые вещества, кристаллизующиеся по типу NaCl. Теплоты их образования и энергии кристаллических решеток равны (ккалмоль): 110 и 722 (Са), 108 и 687 (Sr), 106 и 656 (Ва). Могут быть получены синтезом из элементов при нагревании или прокаливанием сульфатов с углем:

ЭSO4 + 3С = ЭS + CO2 + 2СО.

Менее всех растворим СаS (0,2 гл). ЭS вступает в следующие реакции при нагревании:

ЭS + H 2 O = ЭO + H 2 S; ЭS + Г 2 = S + ЭГ 2 ; ЭS + 2O 2 = ЭSO 4 ; ЭS + xS = ЭS x+1 (x=2,3).

Сульфиды щелочноземельных металлов в нейтральном растворе нацело гидролизованы по схеме:

2ЭS + 2Н 2 О = Э(НS) 2 + Э(ОН) 2 .

Кислые сульфиды могут быть получены и в свободном состоянии упариванием раствора сульфидов. Они вступают в реакции с серой:

Э(НS) 2 + хS = ЭS x+1 + H 2 S (x=2,3,4).

Из кристаллогидратов известны ВаS . 6H 2 O и Са(HS) 2 . 6Н 2 О, Ва(HS) 2 . 4Н 2 О. Са(HS) 2 применяют для удаления волос. ЭS подвержены явлению фосфоресценции. Известны полисульфиды Э: ЭS 2 , ЭS 3 , ЭS 4 , ЭS 5 . Они получаются при кипячении взвеси ЭS в воде с серой. На воздухе ЭS окисляются: 2ЭS + 3О 2 = 2ЭSО 3 . Пропусканием воздуха через суспензию СаS можно получить тиосульфат Са по схеме:

2СаS + 2О 2 + Н 2 О = Са(ОН) 2 + СаS 2 О 3

Он хорошо растворим в воде. В ряду Са - Sr - Ва растворимость тиосульфатов падает. Теллуриды Э мало растворимы в воде и тоже подвержены гидролизу, но в меньшей степени чем сульфиды.

Растворимость хроматов Э в ряду Са - Ва падает также резко, как и в случае с сульфатами. Эти вещества желтого цвета получаются при взаимодействии растворимых солей Э с хроматами (или дихроматами) щелочных металлов:

Э 2+ + СrO 4 2- = ЭCrO4.

Хромат кальция выделяется в виде кристаллогидрата - СаCrO 4 . 2H 2 O (рПР СаCrO 4 = 3,15). Еще до температуры плавления он теряет воду. SrCrO 4 и ВаCrO 4 кристаллогидратов не образуют. pПР SrCrO 4 = 4,44, рПР ВаCrO 4 = 9,93.

Карбонаты Э белые, плохо растворимые в воде вещества. При нагревании ЭСО 3 переходят в ЭО, отщепляя СО 2 . В ряду Са - Ва термическая устойчивость карбонатов возрастает. Наиболее практически важен из них карбонат кальция (известняк). Он непосредственно используется в строительстве, а также служит сырьем для получения извести и цемента. Ежегодная мировая добыча извести из известняка исчисляется десятками миллионов тонн. Термическая диссоциация СаСО 3 эндотермична:

СаСО 3 = СаО + СО 2

и требует затраты 43 ккал на моль известняка. Обжиг СаСО 3 проводят в шахтных печах. Побочным продуктом обжига является ценный углекислый газ. СаО важный строительный материал. При замешивании с водой происходит кристаллизация за счет образования гидроокиси, а затем карбоната по схемам:

СаО + Н 2 О = Са(ОН) 2 и Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О.

Колоссально важную практическую роль играет цемент - зеленовато-серый порошок, состоящий из смеси различных силикатов и алюминатов кальция. Будучи замешан с водой он отвердевает за счет гидратации. При его производстве смесь СаСО 3 с глиной обжигают до начала спекания (1400-1500 о С). Затем смесь перемалывают. Состав цемента можно выразить процентным соотношением компонентов СаО, SiO 2 , Al 2 O 3 , Fe 2 O 3 , причем СаО представляет основание, а все остальное - ангидриды кислот. Состав силикатного (портладского) цемента слагается в основном из Са 3 SiO 5 , Ca 2 SiO 4 , Ca 3 (AlO 3) 2 и Ca(FeO 2) 2 . Его схватывание проходит по схемам:

Са 3 SiO 5 + 3Н 2 О = Ca 2 SiO 4 . 2Н 2 О + Са(ОН) 2

Ca 2 SiO 4 + 2Н 2 О = Ca 2 SiO 4 . 2Н 2 О

Ca 3 (AlO 3) 2 + 6Н 2 О = Ca 3 (AlO 3) 2 . 6Н 2 О

Ca(FeO 2) 2 + nH 2 O = Ca(FeO 2) 2 . nH 2 O.

Природный мел вводят в состав различных замазок. Мелкокристаллический, осажденный из раствора СаСО 3 входит в состав зубных порошков. Из ВаСО 3 прокаливанием с углем получают ВаО по схеме:

ВаСО 3 + С = ВаО + 2СО.

Если процесс вести при более высокой температуре в токе азота образуется цианид бария:

ВаСО 3 + 4С +N 2 = 3CO + Ba(CN) 2 .

Ва(СN) 2 хорошо растворим в воде. Ва(СN) 2 может использован для производства цианидов других металлов путем обменного разложения с сульфатами. Гидрокарбонаты Э растворимы в воде и могут быть получены лишь в растворе например, пропусканием углекислого газа в взвесь СаСО 3 в воде:

СО 2 + СаСО 3 + Н 2 О = Са(НСО 3) 2 .

Эта реакция обратима и при нагревании смещается влево. Наличие гидрокарбонатов кальция и магния в природных водах обуславливает жесткость воды.